咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 80 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 50 篇 计算机科学与技术...
    • 30 篇 软件工程
    • 27 篇 控制科学与工程
    • 13 篇 生物工程
    • 9 篇 电气工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 生物医学工程(可授...
    • 2 篇 材料科学与工程(可...
    • 2 篇 信息与通信工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 机械工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 网络空间安全
  • 34 篇 理学
    • 26 篇 数学
    • 14 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 5 篇 教育学
    • 4 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 10 篇 reinforcement le...
  • 5 篇 robot programmin...
  • 4 篇 deep learning
  • 4 篇 training
  • 3 篇 demonstrations
  • 3 篇 task analysis
  • 3 篇 contrastive lear...
  • 3 篇 robots
  • 3 篇 machine learning
  • 3 篇 curricula
  • 2 篇 variational infe...
  • 2 篇 grasping
  • 2 篇 policy search
  • 2 篇 markov processes
  • 2 篇 intelligent robo...
  • 2 篇 manipulators
  • 2 篇 versatile skill ...
  • 2 篇 modal analysis
  • 2 篇 approximate infe...
  • 2 篇 markov chain mon...

机构

  • 15 篇 autonomous learn...
  • 14 篇 autonomous learn...
  • 10 篇 autonomous learn...
  • 10 篇 intuitive robots...
  • 6 篇 karlsruhe inst t...
  • 6 篇 kit autonomous l...
  • 5 篇 intelligent auto...
  • 5 篇 bosch center for...
  • 4 篇 bosch center for...
  • 4 篇 university of tü...
  • 4 篇 fzi research cen...
  • 4 篇 lcas university ...
  • 4 篇 institute of veh...
  • 3 篇 fzi res ctr info...
  • 2 篇 tech univ denmar...
  • 2 篇 indian institute...
  • 2 篇 bosch corporate ...
  • 2 篇 autonomous learn...
  • 2 篇 autonomous learn...
  • 2 篇 mpi for intellig...

作者

  • 62 篇 neumann gerhard
  • 19 篇 becker philipp
  • 17 篇 celik onur
  • 12 篇 blessing denis
  • 11 篇 freymuth niklas
  • 10 篇 lioutikov rudolf
  • 10 篇 jia xiaogang
  • 8 篇 gerhard neumann
  • 8 篇 ziesche hanna
  • 8 篇 taranovic aleksa...
  • 8 篇 vien ngo anh
  • 7 篇 zhou hongyi
  • 7 篇 li ge
  • 7 篇 dahlinger philip...
  • 7 篇 gao ning
  • 7 篇 arenz oleg
  • 5 篇 onur celik
  • 5 篇 shaj vaisakh
  • 5 篇 reuss moritz
  • 4 篇 volpp michael

语言

  • 73 篇 英文
  • 7 篇 其他
检索条件"机构=Autonomous Learning Robots"
80 条 记 录,以下是41-50 订阅
排序:
On Uncertainty in Deep State Space Models for Model-Based Reinforcement learning
arXiv
收藏 引用
arXiv 2022年
作者: Becker, Philipp Neumann, Gerhard Autonomous Learning Robots Lab Karlsruhe Institute of Technology Germany
Improved state space models, such as Recurrent State Space Models (RSSMs), are a key factor behind recent advances in model-based reinforcement learning (RL). Yet, despite their empirical success, many of the underlyi... 详细信息
来源: 评论
Latent Task-Specific Graph Network Simulators
arXiv
收藏 引用
arXiv 2023年
作者: Dahlinger, Philipp Freymuth, Niklas Volpp, Michael Hoang, Tai Neumann, Gerhard Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany Bosch Center for Artificial Intelligence Renningen Germany
Simulating dynamic physical interactions is a critical challenge across multiple scientific domains, with applications ranging from robotics to material science. For mesh-based simulations, Graph Network Simulators (G... 详细信息
来源: 评论
A Study on Dense and Sparse (Visual) Rewards in Robot Policy learning  22nd
A Study on Dense and Sparse (Visual) Rewards in Robot Policy...
收藏 引用
22th Annual Conference Towards autonomous Robotic Systems, TAROS 2021
作者: Mohtasib, Abdalkarim Neumann, Gerhard Cuayáhuitl, Heriberto Lincoln Centre for Autonomous Systems University of Lincoln Lincoln United Kingdom Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany
Deep Reinforcement learning (DRL) is a promising approach for teaching robots new behaviour. However, one of its main limitations is the need for carefully hand-coded reward signals by an expert. We argue that it is c... 详细信息
来源: 评论
HIDDEN PARAMETER RECURRENT STATE SPACE MODELS FOR CHANGING DYNAMICS SCENARIOS  10
HIDDEN PARAMETER RECURRENT STATE SPACE MODELS FOR CHANGING D...
收藏 引用
10th International Conference on learning Representations, ICLR 2022
作者: Shaj, Vaisakh Büchler, Dieter Sonker, Rohit Becker, Philipp Neumann, Gerhard Autonomous Learning Robots KIT Germany LCAS University of Lincoln United Kingdom Max Planck Institute for Intelligent Systems Tübingen Germany Indian Institute of Technology Kanpur India
Recurrent State-space models (RSSMs) are highly expressive models for learning patterns in time series data and system identification. However, these models assume that the dynamics are fixed and unchanging, which is ... 详细信息
来源: 评论
Category-Agnostic 6D Pose Estimation with Conditional Neural Processes
arXiv
收藏 引用
arXiv 2022年
作者: Li, Yumeng Gao, Ning Ziesche, Hanna Neumann, Gerhard Bosch Center for Artificial Intelligence Germany Autonomous Learning Robots KIT Germany
We present a novel meta-learning approach for 6D pose estimation on unknown objects. In contrast to "instance-level" and "category-level" pose estimation methods, our algorithm learns object repres... 详细信息
来源: 评论
Swarm reinforcement learning for adaptive mesh refinement  23
Swarm reinforcement learning for adaptive mesh refinement
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Niklas Freymuth Philipp Dahlinger Tobias Würth Simon Reisch Luise Kärger Gerhard Neumann Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Institute of Vehicle Systems Technology Karlsruhe Institute of Technology Karlsruhe
Adaptive Mesh Refinement (AMR) enhances the Finite Element Method, an important technique for simulating complex problems in engineering, by dynamically refining mesh regions, enabling a favorable trade-off between co...
来源: 评论
Domain-Specific Fine-Tuning of Large Language Models for Interactive Robot Programming
arXiv
收藏 引用
arXiv 2023年
作者: Alt, Benjamin Keßner, Urs Taranovic, Aleksandar Katic, Darko Hermann, Andreas Jäkel, Rainer Neumann, Gerhard ArtiMinds Robotics Karlsruhe76131 Germany Karlsruhe Institute of Technology Autonomous Learning Robots Lab Karlsruhe76131 Germany
Industrial robots are applied in a widening range of industries, but robot programming mostly remains a task limited to programming experts. We propose a natural language-based assistant for programming of advanced, i... 详细信息
来源: 评论
Beyond ELBOs: A Large-Scale Evaluation of Variational Methods for Sampling
arXiv
收藏 引用
arXiv 2024年
作者: Blessing, Denis Jia, Xiaogang Esslinger, Johannes Vargas, Francisco Neumann, Gerhard Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany University of Cambridge Cambridge United Kingdom FZI Research Center for Information Technology Karlsruhe Germany
Monte Carlo methods, Variational Inference, and their combinations play a pivotal role in sampling from intractable probability distributions. However, current studies lack a unified evaluation framework, relying on d... 详细信息
来源: 评论
Inferring Versatile Behavior from Demonstrations by Matching Geometric Descriptors
arXiv
收藏 引用
arXiv 2022年
作者: Freymuth, Niklas Jordi Schreiber, Nicolas Becker, Philipp Taranovic, Aleksandar Neumann, Gerhard Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany Renningen Germany
Humans intuitively solve tasks in versatile ways, varying their behavior in terms of trajectory-based planning and for individual steps. Thus, they can easily generalize and adapt to new and changing environments. Cur... 详细信息
来源: 评论
learning Sub-Second Routing Optimization in Computer Networks requires Packet-Level Dynamics
arXiv
收藏 引用
arXiv 2024年
作者: Boltres, Andreas Freymuth, Niklas Jahnke, Patrick Karl, Holger Neumann, Gerhard Autonomous Learning Robots Karlsruhe Institute of Technology SAP SE Germany Turba AI United States Internet-Technology and Softwarization Hasso-Plattner-Institut Potsdam Germany
Finding efficient routes for data packets is an essential task in computer networking. The optimal routes depend greatly on the current network topology, state and traffic demand, and they can change within millisecon... 详细信息
来源: 评论