咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 80 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 50 篇 计算机科学与技术...
    • 30 篇 软件工程
    • 27 篇 控制科学与工程
    • 13 篇 生物工程
    • 9 篇 电气工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 生物医学工程(可授...
    • 2 篇 材料科学与工程(可...
    • 2 篇 信息与通信工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 机械工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 网络空间安全
  • 34 篇 理学
    • 26 篇 数学
    • 14 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 5 篇 教育学
    • 4 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 10 篇 reinforcement le...
  • 5 篇 robot programmin...
  • 4 篇 deep learning
  • 4 篇 training
  • 3 篇 demonstrations
  • 3 篇 task analysis
  • 3 篇 contrastive lear...
  • 3 篇 robots
  • 3 篇 machine learning
  • 3 篇 curricula
  • 2 篇 variational infe...
  • 2 篇 grasping
  • 2 篇 policy search
  • 2 篇 markov processes
  • 2 篇 intelligent robo...
  • 2 篇 manipulators
  • 2 篇 versatile skill ...
  • 2 篇 modal analysis
  • 2 篇 approximate infe...
  • 2 篇 markov chain mon...

机构

  • 15 篇 autonomous learn...
  • 14 篇 autonomous learn...
  • 10 篇 autonomous learn...
  • 10 篇 intuitive robots...
  • 6 篇 karlsruhe inst t...
  • 6 篇 kit autonomous l...
  • 5 篇 intelligent auto...
  • 5 篇 bosch center for...
  • 4 篇 bosch center for...
  • 4 篇 university of tü...
  • 4 篇 fzi research cen...
  • 4 篇 lcas university ...
  • 4 篇 institute of veh...
  • 3 篇 fzi res ctr info...
  • 2 篇 tech univ denmar...
  • 2 篇 indian institute...
  • 2 篇 bosch corporate ...
  • 2 篇 autonomous learn...
  • 2 篇 autonomous learn...
  • 2 篇 mpi for intellig...

作者

  • 62 篇 neumann gerhard
  • 19 篇 becker philipp
  • 17 篇 celik onur
  • 12 篇 blessing denis
  • 11 篇 freymuth niklas
  • 10 篇 lioutikov rudolf
  • 10 篇 jia xiaogang
  • 8 篇 gerhard neumann
  • 8 篇 ziesche hanna
  • 8 篇 taranovic aleksa...
  • 8 篇 vien ngo anh
  • 7 篇 zhou hongyi
  • 7 篇 li ge
  • 7 篇 dahlinger philip...
  • 7 篇 gao ning
  • 7 篇 arenz oleg
  • 5 篇 onur celik
  • 5 篇 shaj vaisakh
  • 5 篇 reuss moritz
  • 4 篇 volpp michael

语言

  • 73 篇 英文
  • 7 篇 其他
检索条件"机构=Autonomous Learning Robots"
80 条 记 录,以下是51-60 订阅
排序:
A Survey of Optimization-Based Task and Motion Planning: From Classical to learning Approaches
收藏 引用
IEEE-ASME TRANSACTIONS ON MECHATRONICS 2024年
作者: Zhao, Zhigen Cheng, Shuo Ding, Yan Zhou, Ziyi Zhang, Shiqi Xu, Danfei Zhao, Ye Georgia Inst Technol he Lab Intelligent Decis & Autonomous Robots LIDAR Atlanta GA 30318 USA Georgia Inst Technol Robot Learning & Reasoning Lab RL2 Atlanta GA 30318 USA Binghamton Univ Autonomous Intelligent Robot AIR Grp Binghamton NY 13902 USA
Task and motion planning (TAMP) integrates high-level task planning and low-level motion planning to equip robots with the autonomy to effectively reason over long-horizon, dynamic tasks. Optimization-based TAMP focus... 详细信息
来源: 评论
Swarm Reinforcement learning for Adaptive Mesh Refinement
arXiv
收藏 引用
arXiv 2023年
作者: Freymuth, Niklas Dahlinger, Philipp Würth, Tobias Reisch, Simon Kärger, Luise Neumann, Gerhard Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany Institute of Vehicle Systems Technology Karlsruhe Institute of Technology Karlsruhe Germany
Adaptive Mesh Refinement (AMR) enhances the Finite Element Method, an important technique for simulating complex problems in engineering, by dynamically refining mesh regions, enabling a favorable trade-off between co... 详细信息
来源: 评论
Robot Policy learning from Demonstration Using Advantage Weighting and Early Termination
arXiv
收藏 引用
arXiv 2022年
作者: Mohtasib, Abdalkarim Neumann, Gerhard Cuayáhuitl, Heriberto University of Lincoln Lincoln United Kingdom Autonomous Learning Robots KIT Karlsruhe Germany
learning robotic tasks in the real world is still highly challenging and effective practical solutions remain to be found. Traditional methods used in this area are imitation learning and reinforcement learning, but t... 详细信息
来源: 评论
Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations
arXiv
收藏 引用
arXiv 2024年
作者: Freymuth, Niklas Dahlinger, Philipp Würth, Tobias Becker, Philipp Taranovic, Aleksandar Grönheim, Onno Kärger, Luise Neumann, Gerhard Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany Institute of Vehicle Systems Technology Karlsruhe Institute of Technology Karlsruhe Germany EVAGO GmbH Leonberg Germany
Many engineering systems require accurate simulations of complex physical systems. Yet, analytical solutions are only available for simple problems, necessitating numerical approximations such as the Finite Element Me... 详细信息
来源: 评论
Specializing Versatile Skill Libraries using Local Mixture of Experts
arXiv
收藏 引用
arXiv 2021年
作者: Celik, Onur Zhou, Dongzhuoran Li, Ge Becker, Philipp Neumann, Gerhard Autonomous Learning Robots KIT Germany
A long-cherished vision in robotics is to equip robots with skills that match the versatility and precision of humans. For example, when playing table tennis, a robot should be capable of returning the ball in various... 详细信息
来源: 评论
Deep Black-Box Reinforcement learning with Movement Primitives
arXiv
收藏 引用
arXiv 2022年
作者: Otto, Fabian Celik, Onur Zhou, Hongyi Ziesche, Hanna Vien, Ngo Anh Neumann, Gerhard Bosch Center for AI Germany University of Tübingen Germany Autonomous Learning Robots KIT Germany
Episode-based reinforcement learning (ERL) algorithms treat reinforcement learning (RL) as a black-box optimization problem where we learn to select a parameter vector of a controller, often represented as a movement ... 详细信息
来源: 评论
Intent-Aware Predictive Haptic Guidance and its Application to Shared Control Teleoperation  30
Intent-Aware Predictive Haptic Guidance and its Application ...
收藏 引用
30th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
作者: Ly, Kim Tien Poozhiyil, Mithun Pandya, Harit Neumann, Gerhard Kucukyilmaz, Ayse Univ Nottingham Sch Comp Sci Nottingham England Toshiba Res Europe Cambridge England KIT Autonomous Learning Robots Karlsruhe Germany Univ Lincoln Lincoln Ctr Autonomous Syst L CAS Lincoln England
This paper presents a haptic shared control paradigm that modulates the level of robotic guidance, based on predictions of human motion intentions. The proposed method incorporates robot trajectories learned from huma... 详细信息
来源: 评论
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
arXiv
收藏 引用
arXiv 2022年
作者: Arenz, Oleg Dahlinger, Philipp Ye, Zihan Volpp, Michael Neumann, Gerhard Intelligent Autonomous Systems Technical University of Darmstadt Germany Autonomous Learning Robots Karlsruhe Institute of Technology Germany Technical University of Darmstadt Germany
Variational inference with Gaussian mixture models (GMMs) enables learning of highly tractable yet multi-modal approximations of intractable target distributions with up to a few hundred dimensions. The two currently ... 详细信息
来源: 评论
MP3: Movement Primitive-Based (Re-)Planning Policy
arXiv
收藏 引用
arXiv 2023年
作者: Otto, Fabian Zhou, Hongyi Celik, Onur Li, Ge Lioutikov, Rudolf Neumann, Gerhard Bosch Center for Artificial Intelligence University of Tübingen Tübingen72076 Germany Intuitive Robots Lab Karlsruhe Institute of Technology Karlsruhe76131 Germany Autonomous Learning Robots Lab Karlsruhe Institute of Technology Karlsruhe76131 Germany
We introduce a novel deep reinforcement learning (RL) approach called Movement Primitive-based Planning Policy (MP3). By integrating movement primitives (MPs) into the deep RL framework, MP3 enables the generation of ... 详细信息
来源: 评论
Meta-learning Regrasping Strategies for Physical-Agnostic Objects
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Ning Zhang, Jingyu Chen, Ruijie Vien, Ngo Anh Ziesche, Hanna Neumann, Gerhard Bosch Center for Artificial Intelligence Renningen Germany Autonomous Learning Robots Lab Karlsruhe Institute of Technology Karlsruhe Germany
Grasping inhomogeneous objects in real-world applications remains a challenging task due to the unknown physical properties such as mass distribution and coefficient of friction. In this study, we propose a meta-learn... 详细信息
来源: 评论