咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 34 篇 会议

馆藏范围

  • 80 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 50 篇 计算机科学与技术...
    • 30 篇 软件工程
    • 27 篇 控制科学与工程
    • 13 篇 生物工程
    • 9 篇 电气工程
    • 3 篇 力学(可授工学、理...
    • 3 篇 生物医学工程(可授...
    • 2 篇 材料科学与工程(可...
    • 2 篇 信息与通信工程
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 机械工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 网络空间安全
  • 34 篇 理学
    • 26 篇 数学
    • 14 篇 生物学
    • 9 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 5 篇 教育学
    • 4 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 10 篇 reinforcement le...
  • 5 篇 robot programmin...
  • 4 篇 deep learning
  • 4 篇 training
  • 3 篇 demonstrations
  • 3 篇 task analysis
  • 3 篇 contrastive lear...
  • 3 篇 robots
  • 3 篇 machine learning
  • 3 篇 curricula
  • 2 篇 variational infe...
  • 2 篇 grasping
  • 2 篇 policy search
  • 2 篇 markov processes
  • 2 篇 intelligent robo...
  • 2 篇 manipulators
  • 2 篇 versatile skill ...
  • 2 篇 modal analysis
  • 2 篇 approximate infe...
  • 2 篇 markov chain mon...

机构

  • 15 篇 autonomous learn...
  • 14 篇 autonomous learn...
  • 10 篇 autonomous learn...
  • 10 篇 intuitive robots...
  • 6 篇 karlsruhe inst t...
  • 6 篇 kit autonomous l...
  • 5 篇 intelligent auto...
  • 5 篇 bosch center for...
  • 4 篇 bosch center for...
  • 4 篇 university of tü...
  • 4 篇 fzi research cen...
  • 4 篇 lcas university ...
  • 4 篇 institute of veh...
  • 3 篇 fzi res ctr info...
  • 2 篇 tech univ denmar...
  • 2 篇 indian institute...
  • 2 篇 bosch corporate ...
  • 2 篇 autonomous learn...
  • 2 篇 autonomous learn...
  • 2 篇 mpi for intellig...

作者

  • 62 篇 neumann gerhard
  • 19 篇 becker philipp
  • 17 篇 celik onur
  • 12 篇 blessing denis
  • 11 篇 freymuth niklas
  • 10 篇 lioutikov rudolf
  • 10 篇 jia xiaogang
  • 8 篇 gerhard neumann
  • 8 篇 ziesche hanna
  • 8 篇 taranovic aleksa...
  • 8 篇 vien ngo anh
  • 7 篇 zhou hongyi
  • 7 篇 li ge
  • 7 篇 dahlinger philip...
  • 7 篇 gao ning
  • 7 篇 arenz oleg
  • 5 篇 onur celik
  • 5 篇 shaj vaisakh
  • 5 篇 reuss moritz
  • 4 篇 volpp michael

语言

  • 73 篇 英文
  • 7 篇 其他
检索条件"机构=Autonomous Learning Robots"
80 条 记 录,以下是61-70 订阅
排序:
Versatile Inverse Reinforcement learning via cumulative rewards
arXiv
收藏 引用
arXiv 2021年
作者: Freymuth, Niklas Becker, Philipp Neumann, Gerhard Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany
Inverse Reinforcement learning infers a reward function from expert demonstrations, aiming to encode the behavior and intentions of the expert. Current approaches usually do this with generative and uni-modal models, ... 详细信息
来源: 评论
End-to-End learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control
arXiv
收藏 引用
arXiv 2022年
作者: Reuss, Moritz van Duijkeren, Niels Krug, Robert Becker, Philipp Shaj, Vaisakh Neumann, Gerhard Bosch Corporate Research Renningen Germany LCAS University Of Lincoln United Kingdom Intuitive Robots Lab Karlsruhe Institute of Technology Germany Autonomous Learning Robots Karlsruhe Institute of Technology Germany
It is well-known that inverse dynamics models can improve tracking performance in robot control. These models need to precisely capture the robot dynamics, which consist of well-understood components, e.g., rigid body... 详细信息
来源: 评论
EXPECTED INFORMATION MAXIMIZATION USING THE I-PROJECTION FOR MIXTURE DENSITY ESTIMATION  8
EXPECTED INFORMATION MAXIMIZATION USING THE I-PROJECTION FOR...
收藏 引用
8th International Conference on learning Representations, ICLR 2020
作者: Becker, Philipp Arenz, Oleg Neumann, Gerhard Autonomous Learning Robots KIT Bosch Center for Artificial Intelligence Intelligent Autonomous Systems TU Darmstadt Germany University of Tübingen Germany
Modelling highly multi-modal data is a challenging problem in machine learning. Most algorithms are based on maximizing the likelihood, which corresponds to the M(oment)-projection of the data distribution to the mode... 详细信息
来源: 评论
Deep Adversarial Reinforcement learning for Object Disentangling
Deep Adversarial Reinforcement Learning for Object Disentang...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Laux, Melvin Arenz, Oleg Peters, Jan Pajarinen, Joni Tech Univ Darmstadt Intelligent Autonomous Syst Darmstadt Germany MPI Intelligent Syst Tubingen Germany Tampere Univ Learning Intelligent Autonomous Robots Tampere Finland
Deep learning in combination with improved training techniques and high computational power has led to recent advances in the field of reinforcement learning (RL) and to successful robotic RL applications such as in-h... 详细信息
来源: 评论
HIDDEN PARAMETER RECURRENT STATE SPACE MODELS FOR CHANGING DYNAMICS SCENARIOS
arXiv
收藏 引用
arXiv 2022年
作者: Shaj, Vaisakh Büchler, Dieter Sonker, Rohit Becker, Philipp Neumann, Gerhard Autonomous Learning Robots KIT Germany LCAS University Of Lincoln United Kingdom Max Planck Institute for Intelligent Systems Tübingen Germany Indian Institute Of Technology Kanpur India
Recurrent State-space models (RSSMs) are highly expressive models for learning patterns in time series data and system identification. However, these models assume that the dynamics are fixed and unchanging, which is ... 详细信息
来源: 评论
A study on dense and sparse (Visual) rewards in robot policy learning
arXiv
收藏 引用
arXiv 2021年
作者: Mohtasib, Abdalkarim Neumann, Gerhard Cuayáhuitl, Heriberto Lincoln Centre for Autonomous Systems University of Lincoln Lincoln United Kingdom Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany
Deep Reinforcement learning (DRL) is a promising approach for teaching robots new behaviour. However, one of its main limitations is the need for carefully hand-coded reward signals by an expert. We argue that it is c... 详细信息
来源: 评论
learning Riemannian Manifolds for Geodesic Motion Skills  17th
Learning Riemannian Manifolds for Geodesic Motion Skills
收藏 引用
Conference on Robotics - Science and Systems
作者: Beik-Mohammadi, Hadi Hauberg, Soren Arvanitidis, Georgios Neumann, Gerhard Rozo, Leonel Bosch Ctr Artificial Intelligence BCAI Renningen Germany Karlsruhe Inst Technol KIT Autonomous Learning Robots Lab Karlsruhe Germany Tech Univ Denmark DTU Sect Cognit Syst Lyngby Denmark Max Planck Inst Intelligent Syst MPI IS Tubingen Germany
*For robots to work alongside humans and perform in unstructured environments, they must learn new motion skills and adapt them to unseen situations on the fly. This demands learning models that capture relevant motio... 详细信息
来源: 评论
Machine learning With Computer Networks: Techniques, Datasets, and Models
收藏 引用
IEEE ACCESS 2024年 12卷 54673-54720页
作者: Afifi, Haitham Pochaba, Sabrina Boltres, Andreas Laniewski, Dominic Haberer, Janek Paeleke, Leonard Poorzare, Reza Stolpmann, Daniel Wehner, Nikolas Redder, Adrian Samikwa, Eric Seufert, Michael Accenture D-61476 Kronberg Germany Salzburg Res Forsch Gesell mbH A-5020 Salzburg Austria Karlsruhe Inst Technol KIT Autonomous Learning Robots Lab D-76131 Karlsruhe Germany Osnabruck Univ Inst Comp Sci D-49076 Osnabruck Germany Univ Kiel Distributed Syst Grp D-24118 Kiel Germany Univ Potsdam Digital Engn Fac D-14482 Potsdam Germany Hasso Plattner Inst Digital Hlth & Machine Learning D-14482 Potsdam Germany Hsch Karlsruhe Tech Inst Appl Res Wirtschaft Ctr Appl Res Data Centr Software Syst DSS Res Grp D-76133 Karlsruhe Germany Hamburg Univ Technol Inst Commun Networks D-21073 Hamburg Germany Univ Wurzburg Chair Commun Networks D-97074 Wurzburg Germany Univ Paderborn D-33098 Paderborn Germany Univ Bern Inst Comp Sci CH-3012 Bern Switzerland Univ Augsburg Chair Networked Embedded Syst & Commun Syst D-86159 Augsburg Germany
Machine learning has found many applications in network contexts. These include solving optimisation problems and managing network operations. Conversely, networks are essential for facilitating machine learning train... 详细信息
来源: 评论
autonomous Search for Underground Mine Rescue Using Aerial robots
Autonomous Search for Underground Mine Rescue Using Aerial R...
收藏 引用
IEEE Aerospace Conference
作者: Tung Dang Mascarich, Frank Khattak, Shehryar Huan Nguyen Hai Nguyen Hirsh, Satchel Reinhart, Russell Papachristos, Christos Alexis, Kostas Univ Nevada Autonomous Robots Lab Reno NV 89557 USA Northeastern Univ Lab Learning & Planning Robot Helping Hands Lab Boston MA 02115 USA
In this paper we present a comprehensive solution for autonomous underground mine rescue using aerial robots. In particular, a new class of Micro Aerial Vehicles are equipped with the ability to localize and map in su... 详细信息
来源: 评论
Human-machine symbiosis: A multivariate perspective for physically coupled human-machine systems
收藏 引用
INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES 2023年 170卷
作者: Inga, Jairo Ruess, Miriam Robens, Jan Heinrich Nelius, Thomas Rothfuss, Simon Kille, Sean Dahlinger, Philipp Lindenmann, Andreas Thomaschke, Roland Neumann, Gerhard Matthiesen, Sven Hohmann, Soren Kiesel, Andrea Karlsruhe Inst Technol KIT Inst Control Syst IRS Kaiserstr 12 D-76131 Karlsruhe Germany Univ Freiburg Dept Psychol Cognit Act & Sustainabil Unit Engelbergerstr 41 D-79085 Freiburg Germany Karlsruhe Inst Technol KIT Inst Prod Engn IPEK Kaiserstr 12 D-76131 Karlsruhe Germany Karlsruhe Inst Technol KIT Inst Anthropomat & Robot IAR Autonomous Learning Robots Kaiserstr 12 D-76131 Karlsruhe Germany
The notion of symbiosis has been increasingly mentioned in research on physically coupled human-machine systems. Yet, a uniform specification on which aspects constitute human-machine symbiosis is missing. By combinin... 详细信息
来源: 评论