咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 29 篇 工学
    • 25 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 10 篇 生物工程
    • 7 篇 控制科学与工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 信息与通信工程
    • 1 篇 网络空间安全
  • 25 篇 理学
    • 19 篇 数学
    • 11 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 1 篇 系统科学
  • 5 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 2 篇 图书情报与档案管...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 5 篇 reinforcement le...
  • 2 篇 demonstrations
  • 2 篇 contrastive lear...
  • 2 篇 curricula
  • 2 篇 dynamics
  • 2 篇 mesh generation
  • 2 篇 monte carlo meth...
  • 1 篇 variational infe...
  • 1 篇 physical propert...
  • 1 篇 learning systems
  • 1 篇 inverse problems
  • 1 篇 deep learning
  • 1 篇 impedance
  • 1 篇 encoding (symbol...
  • 1 篇 proposals
  • 1 篇 three-dimensiona...
  • 1 篇 variational tech...
  • 1 篇 policy search
  • 1 篇 markov processes
  • 1 篇 neural networks

机构

  • 15 篇 autonomous learn...
  • 14 篇 autonomous learn...
  • 10 篇 intuitive robots...
  • 4 篇 bosch center for...
  • 4 篇 fzi research cen...
  • 4 篇 lcas university ...
  • 4 篇 institute of veh...
  • 2 篇 indian institute...
  • 2 篇 bosch corporate ...
  • 2 篇 autonomous learn...
  • 2 篇 intuitive robots...
  • 2 篇 autonomous learn...
  • 2 篇 autonomous learn...
  • 2 篇 max planck insti...
  • 2 篇 autonomous learn...
  • 2 篇 lincoln centre f...
  • 2 篇 fzi research cen...
  • 1 篇 intuitive robots...
  • 1 篇 intelligent auto...
  • 1 篇 bosch center for...

作者

  • 33 篇 neumann gerhard
  • 10 篇 becker philipp
  • 9 篇 celik onur
  • 9 篇 blessing denis
  • 8 篇 lioutikov rudolf
  • 8 篇 freymuth niklas
  • 8 篇 jia xiaogang
  • 7 篇 gerhard neumann
  • 6 篇 zhou hongyi
  • 5 篇 taranovic aleksa...
  • 5 篇 li ge
  • 5 篇 dahlinger philip...
  • 4 篇 onur celik
  • 4 篇 shaj vaisakh
  • 4 篇 würth tobias
  • 4 篇 denis blessing
  • 4 篇 reuss moritz
  • 4 篇 kärger luise
  • 3 篇 donat atalay
  • 3 篇 xiaogang jia

语言

  • 37 篇 英文
  • 6 篇 其他
检索条件"机构=Autonomous Learning Robots Karlsruhe Institute of Technology"
43 条 记 录,以下是31-40 订阅
排序:
learning Sub-Second Routing Optimization in Computer Networks requires Packet-Level Dynamics
arXiv
收藏 引用
arXiv 2024年
作者: Boltres, Andreas Freymuth, Niklas Jahnke, Patrick Karl, Holger Neumann, Gerhard Autonomous Learning Robots Karlsruhe Institute of Technology SAP SE Germany Turba AI United States Internet-Technology and Softwarization Hasso-Plattner-Institut Potsdam Germany
Finding efficient routes for data packets is an essential task in computer networking. The optimal routes depend greatly on the current network topology, state and traffic demand, and they can change within millisecon... 详细信息
来源: 评论
Meta-learning Regrasping Strategies for Physical-Agnostic Objects
arXiv
收藏 引用
arXiv 2022年
作者: Gao, Ning Zhang, Jingyu Chen, Ruijie Vien, Ngo Anh Ziesche, Hanna Neumann, Gerhard Bosch Center for Artificial Intelligence Renningen Germany Autonomous Learning Robots Lab Karlsruhe Institute of Technology Karlsruhe Germany
Grasping inhomogeneous objects in real-world applications remains a challenging task due to the unknown physical properties such as mass distribution and coefficient of friction. In this study, we propose a meta-learn... 详细信息
来源: 评论
HIDDEN PARAMETER RECURRENT STATE SPACE MODELS FOR CHANGING DYNAMICS SCENARIOS  10
HIDDEN PARAMETER RECURRENT STATE SPACE MODELS FOR CHANGING D...
收藏 引用
10th International Conference on learning Representations, ICLR 2022
作者: Shaj, Vaisakh Büchler, Dieter Sonker, Rohit Becker, Philipp Neumann, Gerhard Autonomous Learning Robots KIT Germany LCAS University of Lincoln United Kingdom Max Planck Institute for Intelligent Systems Tübingen Germany Indian Institute of Technology Kanpur India
Recurrent State-space models (RSSMs) are highly expressive models for learning patterns in time series data and system identification. However, these models assume that the dynamics are fixed and unchanging, which is ... 详细信息
来源: 评论
End-to-End learning of Hybrid Inverse Dynamics Models for Precise and Compliant Impedance Control
arXiv
收藏 引用
arXiv 2022年
作者: Reuss, Moritz van Duijkeren, Niels Krug, Robert Becker, Philipp Shaj, Vaisakh Neumann, Gerhard Bosch Corporate Research Renningen Germany LCAS University Of Lincoln United Kingdom Intuitive Robots Lab Karlsruhe Institute of Technology Germany Autonomous Learning Robots Karlsruhe Institute of Technology Germany
It is well-known that inverse dynamics models can improve tracking performance in robot control. These models need to precisely capture the robot dynamics, which consist of well-understood components, e.g., rigid body... 详细信息
来源: 评论
A learning-based Controller for Multi-Contact Grasps on Unknown Objects with a Dexterous Hand
A Learning-based Controller for Multi-Contact Grasps on Unkn...
收藏 引用
IEEE/RSJ International Conference on Intelligent robots and Systems (IROS)
作者: Dominik Winkelbauer Rudolph Triebel Berthold Bäuml DLR Institute of Robotics & Mechatronics Germany Learning AI for Dextrous Robots Lab (***) Technical University of Munich Germany Karlsruhe Institute of Technology (KIT) Germany
Existing grasp controllers usually either only support finger-tip grasps or need explicit configuration of the inner forces. We propose a novel grasp controller that supports arbitrary grasp types, including power gra... 详细信息
来源: 评论
Versatile Inverse Reinforcement learning via cumulative rewards
arXiv
收藏 引用
arXiv 2021年
作者: Freymuth, Niklas Becker, Philipp Neumann, Gerhard Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany
Inverse Reinforcement learning infers a reward function from expert demonstrations, aiming to encode the behavior and intentions of the expert. Current approaches usually do this with generative and uni-modal models, ... 详细信息
来源: 评论
A Unified Perspective on Natural Gradient Variational Inference with Gaussian Mixture Models
arXiv
收藏 引用
arXiv 2022年
作者: Arenz, Oleg Dahlinger, Philipp Ye, Zihan Volpp, Michael Neumann, Gerhard Intelligent Autonomous Systems Technical University of Darmstadt Germany Autonomous Learning Robots Karlsruhe Institute of Technology Germany Technical University of Darmstadt Germany
Variational inference with Gaussian mixture models (GMMs) enables learning of highly tractable yet multi-modal approximations of intractable target distributions with up to a few hundred dimensions. The two currently ... 详细信息
来源: 评论
A study on dense and sparse (Visual) rewards in robot policy learning
arXiv
收藏 引用
arXiv 2021年
作者: Mohtasib, Abdalkarim Neumann, Gerhard Cuayáhuitl, Heriberto Lincoln Centre for Autonomous Systems University of Lincoln Lincoln United Kingdom Autonomous Learning Robots Karlsruhe Institute of Technology Karlsruhe Germany
Deep Reinforcement learning (DRL) is a promising approach for teaching robots new behaviour. However, one of its main limitations is the need for carefully hand-coded reward signals by an expert. We argue that it is c... 详细信息
来源: 评论
HIDDEN PARAMETER RECURRENT STATE SPACE MODELS FOR CHANGING DYNAMICS SCENARIOS
arXiv
收藏 引用
arXiv 2022年
作者: Shaj, Vaisakh Büchler, Dieter Sonker, Rohit Becker, Philipp Neumann, Gerhard Autonomous Learning Robots KIT Germany LCAS University Of Lincoln United Kingdom Max Planck Institute for Intelligent Systems Tübingen Germany Indian Institute Of Technology Kanpur India
Recurrent State-space models (RSSMs) are highly expressive models for learning patterns in time series data and system identification. However, these models assume that the dynamics are fixed and unchanging, which is ... 详细信息
来源: 评论
Non-adversarial imitation learning and its connections to adversarial methods
arXiv
收藏 引用
arXiv 2020年
作者: Arenz, Oleg Neumann, Gerhard Intelligent Autonomous Systems TU Darmstadt Germany Autonomous Learning Robots Karlsruhe Institute of Technology Germany Bosch Center for Artificial Intelligence Renningen Germany
Many modern methods for imitation learning and inverse reinforcement learning, such as GAIL or AIRL, are based on an adversarial formulation. These methods apply GANs to match the expert’s distribution over states an... 详细信息
来源: 评论