咨询与建议

限定检索结果

文献类型

  • 59 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 94 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 40 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 14 篇 生物医学工程(可授...
    • 13 篇 光学工程
    • 13 篇 生物工程
    • 12 篇 控制科学与工程
    • 7 篇 信息与通信工程
    • 5 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 3 篇 化学工程与技术
    • 3 篇 网络空间安全
    • 2 篇 土木工程
  • 26 篇 理学
    • 14 篇 生物学
    • 11 篇 物理学
    • 8 篇 数学
    • 7 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 化学
    • 1 篇 大气科学
  • 21 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 13 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 1 篇 军事学

主题

  • 4 篇 image segmentati...
  • 4 篇 semantics
  • 3 篇 image enhancemen...
  • 3 篇 deep neural netw...
  • 3 篇 human robot inte...
  • 3 篇 sensors
  • 3 篇 robustness
  • 2 篇 vegetation mappi...
  • 2 篇 safety
  • 2 篇 sensitivity
  • 2 篇 electroencephalo...
  • 2 篇 crops
  • 2 篇 convolution
  • 2 篇 location awarene...
  • 2 篇 visualization
  • 2 篇 wheels
  • 2 篇 brain-computer i...
  • 2 篇 autonomous aeria...
  • 2 篇 decision making
  • 2 篇 benchmarking

机构

  • 28 篇 shanghai key lab...
  • 23 篇 shanghai enginee...
  • 11 篇 engineering rese...
  • 6 篇 heidelberg
  • 5 篇 ihu strasbourg s...
  • 5 篇 engineering rese...
  • 4 篇 fraunhofer mevis...
  • 4 篇 ji hua laborator...
  • 4 篇 department of me...
  • 4 篇 faculty of mathe...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 erlangen-nürnber...
  • 3 篇 radboud institut...
  • 3 篇 department of bi...
  • 3 篇 school of electr...
  • 3 篇 centre for medic...
  • 3 篇 general robotics...
  • 3 篇 department of di...

作者

  • 29 篇 zhang wenqiang
  • 14 篇 chen zhaoyu
  • 14 篇 hong lingyi
  • 14 篇 jiang kaixun
  • 12 篇 guo pinxue
  • 12 篇 li jinglun
  • 11 篇 wang yan
  • 10 篇 zhou xinyu
  • 9 篇 gao shuyong
  • 8 篇 mai xinji
  • 7 篇 yu jiawen
  • 7 篇 tong xuan
  • 7 篇 wang haoran
  • 7 篇 tao zeng
  • 7 篇 lin junxiong
  • 6 篇 yan shaoqi
  • 5 篇 bakas spyridon
  • 5 篇 reyes mauricio
  • 5 篇 zhao qing
  • 5 篇 ge weifeng

语言

  • 62 篇 英文
  • 32 篇 其他
检索条件"机构=BRACU Robotics Research Lab School of Engineering and Computer Science"
94 条 记 录,以下是11-20 订阅
排序:
DeTrack: in-model latent denoising learning for visual object tracking  24
DeTrack: in-model latent denoising learning for visual objec...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Xinyu Zhou Jinglun Li Lingyi Hong Kaixun Jiang Pinxue Guo Weifeng Ge Wenqiang Zhang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering and Technology Fudan University Shanghai China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China and Shanghai Engineering Research Center of AI & Robotics Academy for Engineering and Technology Fudan University Shanghai China
Previous visual object tracking methods employ image-feature regression models or coordinate autoregression models for bounding box prediction. Image-feature regression methods heavily depend on matching results and d...
来源: 评论
PG-Attack: A Precision-Guided Adversarial Attack Framework Against Vision Foundation Models for Autonomous Driving
arXiv
收藏 引用
arXiv 2024年
作者: Fu, Jiyuan Chen, Zhaoyu Jiang, Kaixun Guo, Haijing Gao, Shuyong Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University China Engineering Research Center of Robotics Ministry of Education Academy for Engineering & Technology Fudan University China
Vision foundation models are increasingly employed in autonomous driving systems due to their advanced capabilities. However, these models are susceptible to adversarial attacks, posing significant risks to the reliab... 详细信息
来源: 评论
Delving into Decision-based Black-box Attacks on Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zhaoyu Shan, Zhengyang Chang, Jingwen Jiang, Kaixun Yang, Dingkang Cheng, Yiting Zhang, Wenqiang Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China
Semantic segmentation is a fundamental visual task that finds extensive deployment in applications with security-sensitive considerations. Nonetheless, recent work illustrates the adversarial vulnerability of semantic... 详细信息
来源: 评论
DeTrack: In-model Latent Denoising Learning for Visual Object Tracking
arXiv
收藏 引用
arXiv 2025年
作者: Zhou, Xinyu Li, Jinglun Hong, Lingyi Jiang, Kaixun Guo, Pinxue Ge, Weifeng Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering and Technology Fudan University Shanghai China
Previous visual object tracking methods employ image-feature regression models or coordinate autoregression models for bounding box prediction. Image-feature regression methods heavily depend on matching results and d... 详细信息
来源: 评论
Deeper Introspective SLAM: How to Avoid Tracking Failures Over Longer Routes?
Deeper Introspective SLAM: How to Avoid Tracking Failures Ov...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Kanwal Naveed Muhammad Latif Anjum Wajahat Hussain Donghwan Lee Robotics & Machine Intelligence (ROMI) Lab School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology Islamabad Pakistan Reinforcement Learning Research Lab School of Electrical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
Large scale active exploration has recently revealed limitations of visual SLAM’s tracking ability. Active view planning methods based on reinforcement learning have been proposed to improve visual tracking *** this ... 详细信息
来源: 评论
VideoPure: Diffusion-based Adversarial Purification for Video Recognition
arXiv
收藏 引用
arXiv 2025年
作者: Jiang, Kaixun Chen, Zhaoyu Fu, Jiyuan Hong, Lingyi Li, Jinglun Zhang, Wenqiang Shanghai Engineering Research Center of AI Robotics Academy for Engineering & Technology Fudan University Shanghai China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
—Recent work indicates that video recognition models are vulnerable to adversarial examples, posing a serious security risk to downstream applications. However, current research has primarily focused on adversarial a... 详细信息
来源: 评论
ClickVOS: Click Video Object Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Guo, Pinxue Hong, Lingyi Zhou, Xinyu Gao, Shuyong Li, Wanyun Li, Jinglun Chen, Zhaoyu Li, Xiaoqiang Zhang, Wei Zhang, Wenqiang the Shanghai Engineering Research Center of AI&Robotics Academy for Engineering&Technology Fudan University Shanghai China the Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China the School of Computer Engineering and Science Shanghai University Shanghai China Engineering Research Center of AI&Robotics Ministry of Education Academy for Engineering&Technology Fudan University Shanghai China
—Video Object Segmentation (VOS) task aims to segment objects in videos. However, previous settings either require time-consuming manual masks of target objects at the first frame during inference or lack the flexibi... 详细信息
来源: 评论
TagOOD: A Novel Approach to Out-of-Distribution Detection via Vision-Language Representations and Class Center Learning
arXiv
收藏 引用
arXiv 2024年
作者: Li, Jinglun Zhou, Xinyu Jiang, Kaixun Hong, Lingyi Guo, Pinxue Chen, Zhaoyu Ge, Weifeng Zhang, Wenqiang Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
Multimodal fusion, leveraging data like vision and language, is rapidly gaining traction. This enriched data representation improves performance across various tasks. Existing methods for out-of-distribution (OOD) det... 详细信息
来源: 评论
Hi-EF: Benchmarking Emotion Forecasting in Human-interaction
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Haoran Mai, Xinji Tao, Zeng Wang, Yan Yu, Jiawen Zhou, Ziheng Tong, Xuan Yan, Shaoqi Zhao, Qing Gao, Shuyong Zhang, Wenqiang Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Engineering Research Center of Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai China School of Information Science and Technology Fudan University Shanghai China
Affective Forecasting, a research direction in psychology that predicts individuals' future emotions, is often constrained by numerous external factors like social influence and temporal distance. To address this,... 详细信息
来源: 评论
P3S-Diffusion:A Selective Subject-driven Generation Framework via Point Supervision
arXiv
收藏 引用
arXiv 2024年
作者: Hu, Junjie Gao, Shuyong Hong, Lingyi Wang, Qishan Zhao, Yuzhou Wang, Yan Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai China
Recent research in subject-driven generation increasingly emphasizes the importance of selective subject features. Nevertheless, accurately selecting the content in a given reference image still poses challenges, espe... 详细信息
来源: 评论