咨询与建议

限定检索结果

文献类型

  • 59 篇 期刊文献
  • 35 篇 会议

馆藏范围

  • 94 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 40 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 14 篇 生物医学工程(可授...
    • 13 篇 光学工程
    • 13 篇 生物工程
    • 12 篇 控制科学与工程
    • 7 篇 信息与通信工程
    • 5 篇 电气工程
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 电子科学与技术(可...
    • 3 篇 化学工程与技术
    • 3 篇 网络空间安全
    • 2 篇 土木工程
  • 26 篇 理学
    • 14 篇 生物学
    • 11 篇 物理学
    • 8 篇 数学
    • 7 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 化学
    • 1 篇 大气科学
  • 21 篇 管理学
    • 13 篇 管理科学与工程(可...
    • 13 篇 图书情报与档案管...
    • 3 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
    • 2 篇 公共卫生与预防医...
  • 5 篇 法学
    • 5 篇 社会学
  • 3 篇 教育学
    • 3 篇 教育学
  • 1 篇 军事学

主题

  • 4 篇 image segmentati...
  • 4 篇 semantics
  • 3 篇 image enhancemen...
  • 3 篇 deep neural netw...
  • 3 篇 human robot inte...
  • 3 篇 sensors
  • 3 篇 robustness
  • 2 篇 vegetation mappi...
  • 2 篇 safety
  • 2 篇 sensitivity
  • 2 篇 electroencephalo...
  • 2 篇 crops
  • 2 篇 convolution
  • 2 篇 location awarene...
  • 2 篇 visualization
  • 2 篇 wheels
  • 2 篇 brain-computer i...
  • 2 篇 autonomous aeria...
  • 2 篇 decision making
  • 2 篇 benchmarking

机构

  • 28 篇 shanghai key lab...
  • 23 篇 shanghai enginee...
  • 11 篇 engineering rese...
  • 6 篇 heidelberg
  • 5 篇 ihu strasbourg s...
  • 5 篇 engineering rese...
  • 4 篇 fraunhofer mevis...
  • 4 篇 ji hua laborator...
  • 4 篇 department of me...
  • 4 篇 faculty of mathe...
  • 3 篇 university of pe...
  • 3 篇 department of co...
  • 3 篇 vector institute...
  • 3 篇 erlangen-nürnber...
  • 3 篇 radboud institut...
  • 3 篇 department of bi...
  • 3 篇 school of electr...
  • 3 篇 centre for medic...
  • 3 篇 general robotics...
  • 3 篇 department of di...

作者

  • 29 篇 zhang wenqiang
  • 14 篇 chen zhaoyu
  • 14 篇 hong lingyi
  • 14 篇 jiang kaixun
  • 12 篇 guo pinxue
  • 12 篇 li jinglun
  • 11 篇 wang yan
  • 10 篇 zhou xinyu
  • 9 篇 gao shuyong
  • 8 篇 mai xinji
  • 7 篇 yu jiawen
  • 7 篇 tong xuan
  • 7 篇 wang haoran
  • 7 篇 tao zeng
  • 7 篇 lin junxiong
  • 6 篇 yan shaoqi
  • 5 篇 bakas spyridon
  • 5 篇 reyes mauricio
  • 5 篇 zhao qing
  • 5 篇 ge weifeng

语言

  • 62 篇 英文
  • 32 篇 其他
检索条件"机构=BRACU Robotics Research Lab School of Engineering and Computer Science"
94 条 记 录,以下是21-30 订阅
排序:
General Compression Framework for Efficient Transformer Object Tracking
arXiv
收藏 引用
arXiv 2024年
作者: Hong, Lingyi Li, Jinglun Zhou, Xinyu Yan, Shilin Guo, Pinxue Jiang, Kaixun Chen, Zhaoyu Gao, Shuyong Zhang, Wei Lu, Hong Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China
Transformer-based trackers have established a dominant role in the field of visual object tracking. While these trackers exhibit promising performance, their deployment on resource-constrained devices remains challeng... 详细信息
来源: 评论
Improving Adversarial Transferability of Vision-Language Pre-training Models through Collaborative Multimodal Interaction
arXiv
收藏 引用
arXiv 2024年
作者: Fu, Jiyuan Chen, Zhaoyu Jiang, Kaixun Guo, Haijing Wang, Jiafeng Gao, Shuyong Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai China
Despite the substantial advancements in Vision-Language Pre-training (VLP) models, their susceptibility to adversarial attacks poses a significant challenge. Existing work rarely studies the transferability of attacks... 详细信息
来源: 评论
From Efficient Multimodal Models to World Models: A Survey
arXiv
收藏 引用
arXiv 2024年
作者: Mai, Xinji Tao, Zeng Lin, Junxiong Wang, Haoran Chang, Yang Kang, Yanlan Wang, Yan Zhang, Wenqiang Shanghai Engineering Research Center of AI and Robotics Academy for Engineering and Technology Fudan University Shanghai China Engineering Research Center of AI and Robotics Ministry of Education Academy for Engineering and Technology Fudan University Shanghai China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
Multimodal Large Models (MLMs) are becoming a significant research focus, combining powerful large language models with multimodal learning to perform complex tasks across different data modalities. This review explor... 详细信息
来源: 评论
Flickr30K-CFQ: A Compact and Fragmented Query Dataset for Text-image Retrieval
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Haoyu Song, Yaoxian Wang, Xuwu Zhu, Xiangru Li, Zhixu Song, Wei Li, Tiefeng Research Center for Intelligent Robotics Zhejiang Lab China Department of Engineering Mechanics Center for X-Mechanics Zhejiang University China Shanghai Key Laboratory of Data Science School of Computer Science Fudan University China
With the explosive growth of multi-modal information on the Internet, unimodal search cannot satisfy the requirement of Internet applications. Text-image retrieval research is needed to realize high-quality and effici... 详细信息
来源: 评论
D2SP: Dynamic Dual-Stage Purification Framework for Dual Noise Mitigation in Vision-based Affective Recognition.
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Haoran Mai, Xinji Tao, Zeng Tong, Xuan Lin, Junxiong Wang, Yan Yu, Jiawen Wang, Boyang Yan, Shaoqi Zhao, Qing Zhou, Ziheng Gao, Shuyong Zhang, Wenqiang Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China School of Information Science and Technology Fudan University Shanghai China Fudan University Shanghai China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
The contemporary state-of-the-art of Dynamic Facial Expression Recognition (DFER) technology facilitates remarkable progress by deriving emotional mappings of facial expressions from video content, underpinned by trai... 详细信息
来源: 评论
LVOS: A Benchmark for Large-scale Long-term Video Object Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Hong, Lingyi Liu, Zhongying Chen, Wenchao Tan, Chenzhi Feng, Yuang Zhou, Xinyu Guo, Pinxue Li, Jinglun Chen, Zhaoyu Gao, Shuyong Zhang, Wei Zhang, Wenqiang Shanghai Key Laboratory of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China The Shanghai Engineering Research Center of AI&Robotics Academy for Engineering&Technology Fudan University Shanghai China Engineering Research Center of AI&Robotics Ministry of Education Academy for Engineering&Technology Fudan University Shanghai China The Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
Video object segmentation (VOS) aims to distinguish and track target objects in a video. Despite the excellent performance achieved by off-the-shell VOS models, existing VOS benchmarks mainly focus on short-term video... 详细信息
来源: 评论
Improving Adversarial Transferability with Neighbourhood Gradient Information
arXiv
收藏 引用
arXiv 2024年
作者: Guo, Haijing Wang, Jiafeng Chen, Zhaoyu Jiang, Kaixun Hong, Lingyi Guo, Pinxue Li, Jinglun Zhang, Wenqiang Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai200433 China Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai200433 China Engineering Research Center of Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai200433 China
Deep neural networks (DNNs) are known to be susceptible to adversarial examples, leading to significant performance degradation. In black-box attack scenarios, a considerable attack performance gap between the surroga...
来源: 评论
Suppressing Uncertainties in Degradation Estimation for Blind Super-Resolution
arXiv
收藏 引用
arXiv 2024年
作者: Lin, Junxiong Tao, Zen Tong, Xuan Mai, Xinji Wang, Haoran Wang, Boyang Wang, Yan Zhao, Qing Yu, Jiawen Lin, Yuxuan Yan, Shaoqi Gao, Shuyong Zhang, Wenqiang Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China East China University of Science and Technology Shanghai China Fudan University Shanghai China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
The problem of blind image super-resolution aims to recover high-resolution (HR) images from low-resolution (LR) images with unknown degradation modes. Most existing methods model the image degradation process using b... 详细信息
来源: 评论
A User-Friendly Framework for Generating Model-Preferred Prompts in Text-to-Image Synthesis
arXiv
收藏 引用
arXiv 2024年
作者: Hei, Nailei Guo, Qianyu Wang, Zihao Wang, Yan Wang, Haofen Zhang, Wenqiang Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University China Engineering Research Center of Robotics Ministry of Education Academy for Engineering & Technology Fudan University China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University China Tongji University China College of Design and Innovation Tongji University China
Well-designed prompts have demonstrated the potential to guide text-to-image models in generating amazing images. Although existing prompt engineering methods can provide high-level guidance, it is challenging for nov... 详细信息
来源: 评论
A3lign-DFER: Pioneering Comprehensive Dynamic Affective Alignment for Dynamic Facial Expression Recognition with CLIP
arXiv
收藏 引用
arXiv 2024年
作者: Tao, Zeng Wang, Yan Lin, Junxiong Wang, Haoran Mai, Xinji Yu, Jiawen Tong, Xuan Zhou, Ziheng Yan, Shaoqi Zhao, Qing Han, Liyuan Zhang, Wenqiang Shanghai Engineering Research Center of AI & Robotics Academy for Engineering & Technology Fudan University Shanghai China School of Information Science and Technology Fudan University Shanghai China Institute of Automation Chinese Academy of Sciences Beijing China Engineering Research Center of AI & Robotics Ministry of Education Academy for Engineering & Technology Fudan University Shanghai China Shanghai Key Lab of Intelligent Information Processing School of Computer Science Fudan University Shanghai China
The performance of CLIP in dynamic facial expression recognition (DFER) task doesn’t yield exceptional results as observed in other CLIP-based classification tasks. While CLIP’s primary objective is to achieve align... 详细信息
来源: 评论