Microservices have been making waves among forward-Thinking application development organizations. In the realm of software development, software architecture holds paramount importance because it serves as a guiding ...
详细信息
The flourish of deep learning frameworks and hardware platforms has been demanding an efficient compiler that can shield the diversity in both software and hardware in order to provide application *** the existing dee...
详细信息
The flourish of deep learning frameworks and hardware platforms has been demanding an efficient compiler that can shield the diversity in both software and hardware in order to provide application *** the existing deep learning compilers,TVM is well known for its efficiency in code generation and optimization across diverse hardware *** the meanwhile,the Sunway many-core processor renders itself as a competitive candidate for its attractive computational power in both scientific computing and deep learning *** paper combines the trends in these two ***,we propose swTVM that extends the original TVM to support ahead-of-time compilation for architecture requiring cross-compilation such as *** addition,we leverage the architecture features during the compilation such as core group for massive parallelism,DMA for high bandwidth memory transfer and local device memory for data locality,in order to generate efficient codes for deep learning workloads on *** experiment results show that the codes generated by swTVM achieve 1.79x improvement of inference latency on average compared to the state-of-the-art deep learning framework on Sunway,across eight representative *** work is the first attempt from the compiler perspective to bridge the gap of deep learning and Sunway processor particularly with productivity and efficiency in *** believe this work will encourage more people to embrace the power of deep learning and Sunwaymany-coreprocessor.
Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and ***,achieving a balance between the quality...
详细信息
Background In recent years,the demand for interactive photorealistic three-dimensional(3D)environments has increased in various fields,including architecture,engineering,and ***,achieving a balance between the quality and efficiency of high-performance 3D applications and virtual reality(VR)remains *** This study addresses this issue by revisiting and extending view interpolation for image-based rendering(IBR),which enables the exploration of spacious open environments in 3D and ***,we introduce multimorphing,a novel rendering method based on the spatial data structure of 2D image patches,called the image *** this approach,novel views can be rendered with up to six degrees of freedom using only a sparse set of *** rendering process does not require 3D reconstruction of the geometry or per-pixel depth information,and all relevant data for the output are extracted from the local morphing cells of the image *** detection of parallax image regions during preprocessing reduces rendering artifacts by extrapolating image patches from adjacent cells in *** addition,a GPU-based solution was presented to resolve exposure inconsistencies within a dataset,enabling seamless transitions of brightness when moving between areas with varying light *** Experiments on multiple real-world and synthetic scenes demonstrate that the presented method achieves high"VR-compatible"frame rates,even on mid-range and legacy hardware,*** achieving adequate visual quality even for sparse datasets,it outperforms other IBR and current neural rendering *** Using the correspondence-based decomposition of input images into morphing cells of 2D image patches,multidimensional image morphing provides high-performance novel view generation,supporting open 3D and VR ***,the handling of morphing artifacts in the parallax image regions remains a topic for future resea
Knowing the rate at which particle radiation releases energy in a material,the“stopping power,”is key to designing nuclear reactors,medical treatments,semiconductor and quantum materials,and many other *** the nucle...
详细信息
Knowing the rate at which particle radiation releases energy in a material,the“stopping power,”is key to designing nuclear reactors,medical treatments,semiconductor and quantum materials,and many other *** the nuclear contribution to stopping power,i.e.,elastic scattering between atoms,is well understood in the literature,the route for gathering data on the electronic contribution has for decades remained costly and reliant on many simplifying assumptions,including that materials are *** establish a method that combines time-dependent density functional theory(TDDFT)and machine learning to reduce the time to assess new materials to hours on a supercomputer and provide valuable data on how atomic details influence electronic *** approach uses TDDFT to compute the electronic stopping from first principles in several directions and then machine learning to interpolate to other directions at a cost of 10 million times fewer *** demonstrate the combined approach in a study of proton irradiation in aluminum and employ it to predict how the depth of maximum energy deposition,the“Bragg Peak,”varies depending on the incident angle—a quantity otherwise inaccessible to modelers and far outside the scales of quantum mechanical *** lack of any experimental information requirement makes our method applicable to most materials,and its speed makes it a prime candidate for enabling quantum-to-continuum models of radiation *** prospect of reusing valuable TDDFT data for training the model makes our approach appealing for applications in the age of materials data science.
Fiber materials are key materials that have changed human history and promoted the progress of human civilization. In ancient times, humans used feathers and animal skins for clothing, and later they widely employed n...
详细信息
Fiber materials are key materials that have changed human history and promoted the progress of human civilization. In ancient times, humans used feathers and animal skins for clothing, and later they widely employed natural fibers such as cotton, hemp, silk and wool to make fabrics(Fig. 1a). Chinese ancestors had mastered the art of natural fiber weaving as early as the Neolithic *** thousand years ago, people were already familiar with and adept at techniques for spinning natural fibers [1].
Automotive cyber-physical systems (ACPS) are typical cyber-physical systems because of the joint interaction between the cyber part and physical part. Functional safety requirement (including response time and reliabi...
详细信息
Automotive cyber-physical systems (ACPS) are typical cyber-physical systems because of the joint interaction between the cyber part and physical part. Functional safety requirement (including response time and reliability requirements) for an ACPS function must be assured for safe driving. Auto industry is cost-sensitive, power-sensitive, and environment-friendly. Energy consumption affects the development efficiency of the ACPS and the living environment of people. This paper solves the problem of optimizing the energy consumption for an ACPS function while assuring its functional safety requirement (i.e., energy-efficient functional safety for ACPS). However, implementing minimum response time, maximum reliability, and minimum energy consumption is a conflicting problem. Consequently, solving the problem is a challenge. In this paper, we propose a three-stage design process toward energy-efficient functional safety for ACPS. The topic problem is divided into three sub-problems, namely, response time requirement verification (first stage), functional safety requirement verification (second stage), and functional safety-critical energy consumption optimization (third stage). The proposed energy-efficient functional safety design methodology is implemented by using automotive safety integrity level decomposition, which is defined in the ACPS functional safety standard ISO 26262. Experiments with real-life and synthetic ACPS functions reveal the advantages of the proposed design methodology toward energy-efficient functional safety for ACPS compared with state-of-the-art algorithms. IEEE
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of th...
Deep learning has become an important computational paradigm in our daily lives with a wide range of applications,from authentication using facial recognition to autonomous driving in smart vehicles. The quality of the deep learning models, i.e., neural architectures with parameters trained over a dataset, is crucial to our daily living and economy.
Recommender systems aim to filter information effectively and recommend useful sources to match users' requirements. However, the exponential growth of information in recent social networks may cause low predictio...
详细信息
The Peer-to-peer (P2P) lending platform allows borrowers to connect directly with lenders outside traditional banking systems. Therefore, for the sustainability of these platforms, they must accurately assess the cred...
详细信息
ISBN:
(数字)9798331528201
ISBN:
(纸本)9798331528218
The Peer-to-peer (P2P) lending platform allows borrowers to connect directly with lenders outside traditional banking systems. Therefore, for the sustainability of these platforms, they must accurately assess the credit risk and profitability of the loans. Various credit scoring techniques, including Logistic Regression, neural networks, and ensemble methods, can be used to estimate the likelihood of borrower default. It is imperative to analyze the profit the lenders generated and enhance the credit scoring so that the investors face minimum loss. Once the profit analysis is done, then it is crucial to advise the investors about the portfolio of loans. This paper presents recent credit scoring, profit scoring, and portfolio optimization trends for P2P lending. We highlight the significant issues in incorporating machine learning models into credit scoring systems. The analysis emphasizes the need for a data-driven approach to perfecting lending practices, thus benefiting both borrowers and investors in the rapidly changing P2P landscape.
Accurate detection and classification of road faults such as cracks is critical for transportation infrastructure maintenance. Road cracks impede comfortable traveling, endanger passenger safety, and create incidents....
详细信息
暂无评论