咨询与建议

限定检索结果

文献类型

  • 207 篇 期刊文献
  • 169 篇 会议
  • 2 册 图书

馆藏范围

  • 378 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 232 篇 工学
    • 149 篇 计算机科学与技术...
    • 128 篇 软件工程
    • 50 篇 生物工程
    • 39 篇 信息与通信工程
    • 37 篇 生物医学工程(可授...
    • 26 篇 光学工程
    • 24 篇 电气工程
    • 22 篇 控制科学与工程
    • 19 篇 土木工程
    • 14 篇 化学工程与技术
    • 11 篇 电子科学与技术(可...
    • 10 篇 仪器科学与技术
    • 10 篇 动力工程及工程热...
    • 9 篇 建筑学
    • 9 篇 安全科学与工程
    • 8 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 8 篇 船舶与海洋工程
  • 142 篇 理学
    • 58 篇 生物学
    • 42 篇 数学
    • 33 篇 物理学
    • 22 篇 化学
    • 20 篇 统计学(可授理学、...
  • 52 篇 管理学
    • 30 篇 图书情报与档案管...
    • 24 篇 管理科学与工程(可...
    • 16 篇 工商管理
  • 26 篇 医学
    • 24 篇 临床医学
    • 20 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 10 篇 法学
  • 8 篇 教育学
    • 7 篇 教育学
  • 6 篇 经济学
  • 3 篇 农学
  • 1 篇 军事学

主题

  • 15 篇 accuracy
  • 13 篇 deep learning
  • 13 篇 training
  • 8 篇 neural networks
  • 8 篇 computational mo...
  • 8 篇 machine learning
  • 7 篇 feature extracti...
  • 7 篇 computer vision
  • 7 篇 convolutional ne...
  • 6 篇 deep neural netw...
  • 6 篇 predictive model...
  • 6 篇 real-time system...
  • 6 篇 forecasting
  • 5 篇 magnetic resonan...
  • 5 篇 adversarial mach...
  • 5 篇 navigation
  • 5 篇 testing
  • 4 篇 roads
  • 4 篇 distillation
  • 4 篇 safety

机构

  • 57 篇 interdisciplinar...
  • 47 篇 department of el...
  • 11 篇 department of el...
  • 10 篇 department of el...
  • 9 篇 department of co...
  • 9 篇 interdisciplinar...
  • 8 篇 interdisciplinar...
  • 8 篇 interdisciplinar...
  • 7 篇 dept. of electri...
  • 7 篇 division of digi...
  • 7 篇 interdisciplinar...
  • 6 篇 department of mo...
  • 6 篇 department of bi...
  • 6 篇 dept. of electri...
  • 6 篇 department of co...
  • 6 篇 vector institute...
  • 6 篇 department of co...
  • 6 篇 bachelor degree ...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...

作者

  • 56 篇 yoon sungroh
  • 16 篇 jung dahuin
  • 13 篇 kim young min
  • 13 篇 sungroh yoon
  • 12 篇 lee saehyung
  • 11 篇 hwang uiwon
  • 8 篇 young min kim
  • 8 篇 kim eunji
  • 8 篇 jang hyemi
  • 7 篇 bae ho
  • 7 篇 kim junho
  • 7 篇 kim siwon
  • 7 篇 kim sun
  • 7 篇 hwang min-shiang
  • 6 篇 park junsung
  • 6 篇 piao yinhua
  • 6 篇 dahuin jung
  • 6 篇 lee jonghyun
  • 6 篇 mok jisoo
  • 6 篇 suharjito

语言

  • 280 篇 英文
  • 96 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Bachelor of Engineering Program in Computer Engineering and Artificial Intelligence"
378 条 记 录,以下是281-290 订阅
排序:
Protocol to explain support vector machine predictions via exact Shapley value computation
收藏 引用
STAR Protocols 2024年 第2期5卷 103010页
作者: Mastropietro, Andrea Bajorath, Jürgen Deparment of Computer Control and Management Engineering “Antonio Ruberti” Sapienza University of Rome Via Ariosto 25 Rome 00185 Italy Department of Life Science Informatics and Data Science B-IT LIMES Program Unit Chemical Biology and Medicinal Chemistry Rheinische Friedrich-Wilhelms-Universität Friedrich-Hirzebruch-Allee 5/6 Bonn 53115 Germany Lamarr Institute for Machine Learning and Artificial Intelligence Friedrich-Hirzebruch-Allee 5/6 Bonn 53115 Germany
Shapley values from cooperative game theory are adapted for explaining machine learning predictions. For large feature sets used in machine learning, Shapley values are approximated. We present a protocol for two tech... 详细信息
来源: 评论
A Framework for Interpretability in Machine Learning for Medical Imaging
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Alan Q. Karaman, Batuhan K. Kim, Heejong Rosenthal, Jacob Saluja, Rachit Young, Sean I. Sabuncu, Mert R. School of Electrical and Computer Engineering Cornell University Cornell Tech New YorkNY10044 United States Department of Radiology Weill Cornell Medical School New YorkNY10065 United States Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program New YorkNY10065 United States Martinos Center for Biomedical Imaging Harvard Medical School BostonMA02129 United States Computer Science and Artificial Intelligence Laboratory MIT CambridgeMA02139 United States
Interpretability for machine learning models in medical imaging (MLMI) is an important direction of research. However, there is a general sense of murkiness in what interpretability means. Why does the need for interp... 详细信息
来源: 评论
A Deep Learning Approach for Nerve Injury Classification in Brachial Plexopathies Using Magnetic Resonance Neurography with Modified Hiking Optimization Algorithm
收藏 引用
Academic Radiology 2025年
作者: Dahou, Abdelghani Elaziz, Mohamed Abd Khattap, Mohamed G. Hassan, Hend Galal Eldeen Mohamed Ali School of Computer Science and Technology Zhejiang Normal University Jinhua 321004 China Mathematics and Computer Science department University of Ahmed DRAIA Adrar 01000 Algeria Department of Mathematics Faculty of Science Zagazig University Zagazig 44519 Egypt Faculty of Computer Science and Engineering Galala University Suez 435611 Egypt Artificial Intelligence Research Center (AIRC) Ajman University Ajman 346 United Arab Emirates Department of Diagnostic Interventional Radiology and Molecular Imaging Faculty of Medicine Ain Shams University Cairo 11591 Egypt Technology of Radiology and Medical Imaging Program Faculty of Applied Health Sciences Technology Galala University Suez 435611 Egypt
Rationale and Objectives: Brachial plexopathies (BPs) encompass a complex spectrum of nerve injuries affecting motor and sensory function in the upper extremities. Diagnosis is challenging due to the intricate anatomy... 详细信息
来源: 评论
Lightweight equivariant model for efficient machine learning interatomic potentials
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Ziduo Wang, Xian Li, Yifan Lv, Qiujie Chen, Calvin Yu-Chian Shen, Lei Department of Mechanical Engineering National University of Singapore Singapore117575 Singapore Artificial Intelligence Medical Research Center School of Intelligent Systems Engineering Shenzhen Campus of Sun Yat-sen University Shenzhen518107 China Department of Physics National University of Singapore Singapore117551 Singapore -Preferred Program School of Electronic and Computer Engineering Peking University Shenzhen Graduate School Shenzhen518055 China State Key Laboratory of Chemical Oncogenomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School Shenzhen518055 China Guangdong L-Med Biotechnology Co. Ltd Guangdong Meizhou514699 China Research Institute Chongqing401123 China
In modern computational materials science, deep learning has shown the capability to predict interatomic potentials, thereby supporting and accelerating conventional simulations. However, existing models typically sac... 详细信息
来源: 评论
Ant Colony Optimization based Medical Image Preservation and Segmentation
Ant Colony Optimization based Medical Image Preservation and...
收藏 引用
Advanced Technologies in Intelligent Control, Environment, Computing & Communication engineering (ICATIECE), International Conference on
作者: Priya Nandihal Piyush Kumar Pareek Victor Hugo Costa De Albuquerque Madhumala R B Ashish Khanna V Sunil Kumar Dept of Computer Science and Design Dayananda Sagar Academy of Technology and Management Bangalore Graduate Program in Telecommunication Engineering Federal Institute of Education Science and Technology of Ceara Fortaleza Brazil Department of Teleinformatics Engineering Federal University of Ceara Brazil Department of ISE Dayananda Sagar Academy of Technology and Management Bangalore CSE Dept Maharaja Agrasen Institute of Technology GGSIPU Department of Artificial Intelligence & Machine Learning Nitte Meenakshi Institute of Technology Bengaluru
Image segmentation is an essential component in many different types of computer vision systems. Image segmentation is used in order to identify objects and boundaries within pictures. It is important to note that the... 详细信息
来源: 评论
Developing a medical artificial intelligence course for high school students
Developing a medical artificial intelligence course for high...
收藏 引用
International Forum on Medical Imaging in Asia 2021, IFMIA 2021
作者: Huang, Chao-Jung Wu, Tinghui Lu, Jui-Ting Lin, Beatrice Chang, Dawei Wang, Pochuan Wang, Mei-Chi Lee, Peijung Wang, Weichung National Taiwan University-Stanford Joint Program Office of AI in Biotechnology Ministry of Science and Technology Joint Research Center for Artificial Intelligence Technology and All Vista Healthcare Taipei Taiwan Institute of Applied Mathematical Sciences National Taiwan University Taipei Taiwan Department of Mathematics Ecole Normale Supérieure de Lyon Lyon France Department of Computer Science and Information Engineering National Taiwan University Taipei Taiwan Department of Electronic and Computer Engineering National Taiwan University of Science and Technology Taipei Taiwan Department of Mathematics National Taiwan University Taipei Taiwan
artificial intelligence (AI) training courses often require prerequisites such as calculus or statistics. It is hence challenging to design and develop an introductory AI course for students of secondary education. Th... 详细信息
来源: 评论
Conditional Generative Modeling for Amorphous Multi-Element Materials
arXiv
收藏 引用
arXiv 2025年
作者: Li, Honglin Liu, Chuhao Guo, Yongfeng Luo, Xiaoshan Chen, Yijie Liu, Guangsheng Li, Yu Wang, Ruoyu Wang, Zhenyu Wu, Jianzhuo Ma, Cheng Xie, Zhuohang Lv, Jian Ding, Yufei Zhang, Huabin Luo, Jian Zhong, Zhicheng Li, Mufan Wang, Yanchao Li, Wan-Lu Key Laboratory of Material Simulation Methods and Software Ministry of Education College of Physics Jilin University Changchun China Aiiso Yufeng Li Family Department of Chemical and Nano Engineering University of California La Jolla San DiegoCA United States Institute of Molecular Engineering Plus College of Chemistry Fuzhou University Fuzhou China College of Chemistry and Molecular Engineering Peking University Beijing China School of Physics Nankai University Tianjin China Institute of Modern Physics Fudan University Shanghai China Program in Materials Science and Engineering University of California La Jolla San DiegoCA United States School of Artificial Intelligence and Data Science University of Science and Technology of China Hefei230026 China Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou215123 China International Center of Future Science Jilin University Changchun China Department of Computer Science and Engineering University of California La Jolla San DiegoCA United States Center for Renewable Energy and Storage Technologies Physical Science and Engineering Division King Abdullah University of Science and Technology Thuwal Saudi Arabia Suzhou Lab Suzhou215123 China
Amorphous multi-element materials offer unprecedented tunability in composition and properties, yet their rational design remains challenging due to the lack of predictive structure-property relationships and the vast... 详细信息
来源: 评论
Spatiotemporal dilated convolution with uncertain matching for video-based crowd estimation
arXiv
收藏 引用
arXiv 2021年
作者: Ma, Yu-Jen Shuai, Hong-Han Cheng, Wen-Huang Department of Electrical and Computer Engineering National Chiao Tung University Hsinchu Taiwan Institute of Electronics National Chiao Tung Univresity Hsinchu300 Taiwan Artificial Intelligence and Data Science Program National Chung Hsing University Taichung400 Taiwan
In this paper, we propose a novel SpatioTemporal convolutional Dense Network (STDNet) to address the video-based crowd counting problem, which contains the decomposition of 3D convolution and the 3D spatiotemporal dil... 详细信息
来源: 评论
TargetNet: Functional microRNA target prediction with deep neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Min, Seonwoo Lee, Byunghan Yoon, Sungroh Department of Electrical and Computer Engineering Seoul National University Seoul08826 Korea Republic of LG AI Research Seoul07796 Korea Republic of Department of Electronic and IT Media Engineering Seoul National University of Science and Technology Seoul01811 Korea Republic of Interdisciplinary Program in Artificial Intelligence and Interdisciplinary Program in Bioinformatics Seoul National University Seoul08826 Korea Republic of
Motivation: MicroRNAs (miRNAs) play pivotal roles in gene expression regulation by binding to target sites of messenger RNAs (mRNAs). While identifying functional targets of miRNAs is of utmost importance, their predi... 详细信息
来源: 评论
Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification
arXiv
收藏 引用
arXiv 2021年
作者: Piao, Yinhua Lee, Sangseon Lee, Dohoon Kim, Sun Department of Computer Science and Engineering Seoul National University Korea Republic of Institute of Computer Technology Seoul National University Korea Republic of Bioinformatics Institute Seoul National University Korea Republic of AIGENDRUG Co. Ltd Interdisciplinary Program in Artificial Intelligence Seoul National University Korea Republic of
Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses th... 详细信息
来源: 评论