咨询与建议

限定检索结果

文献类型

  • 70 篇 期刊文献
  • 29 篇 会议
  • 1 册 图书

馆藏范围

  • 100 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 71 篇 工学
    • 51 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 20 篇 生物工程
    • 16 篇 信息与通信工程
    • 13 篇 光学工程
    • 10 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 化学工程与技术
    • 6 篇 交通运输工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 林业工程
    • 1 篇 安全科学与工程
  • 41 篇 理学
    • 20 篇 生物学
    • 15 篇 数学
    • 15 篇 物理学
    • 7 篇 化学
    • 5 篇 统计学(可授理学、...
    • 3 篇 系统科学
  • 10 篇 管理学
    • 6 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 8 篇 object detection
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 6 篇 deep neural netw...
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 deep learning
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 face recognition
  • 4 篇 convolution
  • 4 篇 computer vision
  • 3 篇 semantic segment...
  • 3 篇 task analysis
  • 3 篇 computer archite...
  • 3 篇 semantics
  • 3 篇 benchmarking
  • 3 篇 autonomous vehic...
  • 3 篇 shape

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 institute of dee...
  • 21 篇 national enginee...
  • 12 篇 beihang universi...
  • 8 篇 national enginee...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 baidu inc.
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 guodong guo
  • 5 篇 zhu yu
  • 5 篇 xiong hui
  • 5 篇 dingfu zhou

语言

  • 100 篇 英文
检索条件"机构=Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application"
100 条 记 录,以下是21-30 订阅
排序:
Part-level Car Parsing and Reconstruction from a Single Street View
arXiv
收藏 引用
arXiv 2018年
作者: Geng, Qichuan Zhang, Hong Huang, Xinyu Wang, Sen Lu, Feixiang Cheng, Xinjing Zhou, Zhong Yang, Ruigang Beihang University Beijing China Baidu Research Beijing China National Engineering Laboratory of Deep Learning Technology and Application China
Part information has been shown to be resistant to occlusions and viewpoint changes, which is beneficial for various vision-related tasks. However, we found very limited work in car pose estimation and reconstruction ... 详细信息
来源: 评论
Widerperson: A diverse dataset for dense pedestrian detection in the wild
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Shifeng Xie, Yiliang Wan, Jun Xia, Hansheng Li, Stan Z. Guo, Guodong Beijing China Macau University of Science and Technology China United States Nanjing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application
Pedestrian detection has achieved significant progress with the availability of existing benchmark datasets. However, there is a gap in the diversity and density between real world requirements and current pedestrian ... 详细信息
来源: 评论
GINet: Graph interaction network for scene parsing
arXiv
收藏 引用
arXiv 2020年
作者: Wu, Tianyi Lu, Yu Zhu, Yu Zhang, Chuang Wu, Ming Ma, Zhanyu Guo, Guodong Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China Beijing University of Posts and Telecommunications Beijing China
Recently, context reasoning using image regions beyond local convolution has shown great potential for scene parsing. In this work, we explore how to incorperate the linguistic knowledge to promote context reasoning o... 详细信息
来源: 评论
Dynamic Group Transformer: A General Vision Transformer Backbone with Dynamic Group Attention
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Kai Wu, Tianyi Liu, Cong Guo, Guodong Sun Yat-Sen University Guangzhou China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Recently, Transformers have shown promising performance in various vision tasks. To reduce the quadratic computation complexity caused by each query attending to all keys/values, various methods have constrained the r...
来源: 评论
Every Pixel Counts: Unsupervised geometry learning with holistic 3d motion understanding
arXiv
收藏 引用
arXiv 2018年
作者: Yang, Zhenheng Wang, Peng Wang, Yang Xu, Wei Nevatia, Ram University of Southern California Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications
learning to estimate 3D geometry in a single image by watching unlabeled videos via deep convolutional network has made significant process recently. Current state-of-the-art (SOTA) methods, are based on the learning ... 详细信息
来源: 评论
LEGO: learning edge with geometry all at once by watching videos
arXiv
收藏 引用
arXiv 2018年
作者: Yang, Zhenheng Wang, Peng Wang, Yang Xu, Wei Nevatia, Ram University of Southern California Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications
learning to estimate 3D geometry in a single image by watching unlabeled videos via deep convolutional network is attracting significant attention. In this paper, we introduce a "3D as-smooth-as-possible (3D-ASAP... 详细信息
来源: 评论
Occlusion aware unsupervised learning of optical flow
arXiv
收藏 引用
arXiv 2017年
作者: Wang, Yang Yang, Yi Yang, Zhenheng Zhao, Liang Wang, Peng Xu, Wei Baidu Research University of Southern California National Engineering Laboratory for Deep Learning Technology and Applications
It has been recently shown that a convolutional neural network can learn optical flow estimation with unsuper-vised learning. However, the performance of the unsuper-vised methods still has a relatively large gap comp... 详细信息
来源: 评论
FCFR-Net: Feature fusion based coarse-to-fine residual learning for depth completion
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Lina Song, Xibin Lyu, Xiaoyang Diao, Junwei Wang, Mengmeng Liu, Yong Zhang, Liangjun Institute of Cyber-Systems and Control Zhejiang University China Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China
Depth completion aims to recover a dense depth map from a sparse depth map with the corresponding color image as input. Recent approaches mainly formulate depth completion as a one-stage end-to-end learning task, whic... 详细信息
来源: 评论
Interactive language acquisition with one-shot visual concept learning through a conversational game
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Haichao Yu, Haonan Xu, Wei Baidu Research - Institue of Deep Learning Sunnyvale United States National Engineering Laboratory for Deep Learning Technology and Applications Beijing China
Building intelligent agents that can communicate with and learn from humans in natural language is of great value. Supervised language learning is limited by the ability of capturing mainly the statistics of training ... 详细信息
来源: 评论
LAE : Long-Tailed Age Estimation  19th
LAE : Long-Tailed Age Estimation
收藏 引用
19th International Conference on Computer Analysis of Images and Patterns, CAIP 2021
作者: Bao, Zenghao Tan, Zichang Zhu, Yu Wan, Jun Ma, Xibo Lei, Zhen Guo, Guodong CBSR&NLPR Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China Centre for Artificial Intelligence and Robotics Hong Kong Institute of Science and Innovation Chinese Academy of Sciences Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Facial age estimation is an important yet very challenging problem in computer vision. To improve the performance of facial age estimation, we first formulate a simple standard baseline and build a much strong one by ... 详细信息
来源: 评论