咨询与建议

限定检索结果

文献类型

  • 70 篇 期刊文献
  • 29 篇 会议
  • 1 册 图书

馆藏范围

  • 100 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 71 篇 工学
    • 51 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 20 篇 生物工程
    • 16 篇 信息与通信工程
    • 13 篇 光学工程
    • 10 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 化学工程与技术
    • 6 篇 交通运输工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 林业工程
    • 1 篇 安全科学与工程
  • 41 篇 理学
    • 20 篇 生物学
    • 15 篇 数学
    • 15 篇 物理学
    • 7 篇 化学
    • 5 篇 统计学(可授理学、...
    • 3 篇 系统科学
  • 10 篇 管理学
    • 6 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 8 篇 object detection
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 6 篇 deep neural netw...
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 deep learning
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 face recognition
  • 4 篇 convolution
  • 4 篇 computer vision
  • 3 篇 semantic segment...
  • 3 篇 task analysis
  • 3 篇 computer archite...
  • 3 篇 semantics
  • 3 篇 benchmarking
  • 3 篇 autonomous vehic...
  • 3 篇 shape

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 institute of dee...
  • 21 篇 national enginee...
  • 12 篇 beihang universi...
  • 8 篇 national enginee...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 baidu inc.
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 guodong guo
  • 5 篇 zhu yu
  • 5 篇 xiong hui
  • 5 篇 dingfu zhou

语言

  • 100 篇 英文
检索条件"机构=Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application"
100 条 记 录,以下是31-40 订阅
排序:
Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking
arXiv
收藏 引用
arXiv 2021年
作者: Jiang, Nan Wang, Kuiran Peng, Xiaoke Yu, Xuehui Wang, Qiang Xing, Junliang Li, Guorong Zhao, Jian Guo, Guodong Han, Zhenjun Beijing101408 China Beijing China Institute of North Electronic Equipment Beijing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application China
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation. Therefore, perception of the status of UAVs is crucially important. In this paper, we consider the task of tracking UAVs, prov... 详细信息
来源: 评论
Region-level Contrastive and Consistency learning for Semi-Supervised Semantic Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Jianrong Wu, Tianyi Ding, Chuanghao Zhao, Hongwei Guo, Guodong College of Computer Science and Technology Jilin University Changchun China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China College of Software Jilin University Changchun China The Institute of Deep Learning Baidu Research China
Current semi-supervised semantic segmentation methods mainly focus on designing pixel-level consistency and contrastive regularization. However, pixel-level regularization is sensitive to noise from pixels with incorr... 详细信息
来源: 评论
A Representation Separation Perspective to Correspondences-free Unsupervised 3D Point Cloud Registration
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Zhiyuan Sun, Jiadai Dai, Yuchao Zhou, Dingfu Song, Xibin He, Mingyi School of Electronics and Information Northwestern Polytechnical University Xi’an China Baidu Research and National Engineering Laboratory Deep Learning Technology and Application Beijing China
3D point cloud registration in remote sensing field has been greatly advanced by deep learning based methods, where the rigid transformation is either directly regressed from the two point clouds (correspondences-free... 详细信息
来源: 评论
Pale Transformer: A General Vision Transformer Backbone with Pale-Shaped Attention
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Sitong Wu, Tianyi Tan, Haoru Guo, Guodong Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Recently, Transformers have shown promising performance in various vision tasks. To reduce the quadratic computation complexity caused by the global self-attention, various methods constrain the range of attention wit... 详细信息
来源: 评论
Interactive grounded language acquisition and generalization in a 2D world
arXiv
收藏 引用
arXiv 2018年
作者: Yu, Haonan Zhang, Haichao Xu, Wei Baidu Research Sunnyvale United States National Engineering Laboratory for Deep Learning Technology and Applications Beijing China
We build a virtual agent for learning language in a 2D maze-like world. The agent sees images of the surrounding environment, listens to a virtual teacher, and takes actions to receive rewards. It interactively learns... 详细信息
来源: 评论
Enhancing person-Job fit for talent recruitment: An ability-aware neural network approach
arXiv
收藏 引用
arXiv 2018年
作者: Qin, Chuan Zhu, Hengshu Xu, Tong Zhu, Chen Jiang, Liang Chen, Enhong Xiong, Hui Anhui Province Key Lab of Big Data Analysis and Application University of Science and Technology of China Baidu Talent Intelligence Center Baidu Inc Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology an Application China
The wide spread use of online recruitment services has led to information explosion in the job market. As a result, the recruiters have to seek the intelligent ways for Person-Job Fit, which is the bridge for adapting... 详细信息
来源: 评论
Gradient descent meets shift-and-invert preconditioning for eigenvector computation  18
Gradient descent meets shift-and-invert preconditioning for ...
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Zhiqiang Xu Big Data Lab (BDL-US) Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications
Shift-and-invert preconditioning, as a classic acceleration technique for the leading eigenvector computation, has received much attention again recently, owing to fast least-squares solvers for efficiently approximat...
来源: 评论
Fully transformer networks for semantic image segmentation
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Sitong Wu, Tianyi Lin, Fangjian Tian, Shengwei Guo, Guodong Institute of Deep Learning Baidu Research Beijing100085 China National Engineering Laboratory for Deep Learning Technology and Application Beijing100085 China Shengwei Tian are with School of Software XinJiang University Urumqi China
Transformers have shown impressive performance in various natural language processing and computer vision tasks, due to the capability of modeling long-range dependencies. Recent progress has demonstrated that combini... 详细信息
来源: 评论
Binarized neural architecture search for efficient object recognition
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Hanlin an Zhuo, Li Zhang, Baochang Zheng, Xiawu Liu, Jianzhuang Ji, Rongrong Doermann, David Guo, Guodong Beihang University Beijing China Xiamen University Fujian China Shenzhen Institutes of Advanced Technology University at Buffalo Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application Shenzhen China
Traditional neural architecture search (NAS) has a significant impact in computer vision by automatically designing network architectures for various tasks. In this paper, binarized neural architecture search (BNAS), ... 详细信息
来源: 评论
Recurrent Bilinear Optimization for Binary Neural Networks
arXiv
收藏 引用
arXiv 2022年
作者: Xu, Sheng Li, Yanjing Wang, Tiancheng Ma, Teli Zhang, Baochang Gao, Peng Qiao, Yu Lü, Jinhu Guo, Guodong Beihang University Beijing China Shanghai Artificial Intelligence Laboratory Shanghai China Zhongguancun Laboratory Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Beijing China
Binary Neural Networks (BNNs) show great promise for real-world embedded devices. As one of the critical steps to achieve a powerful BNN, the scale factor calculation plays an essential role in reducing the performanc... 详细信息
来源: 评论