咨询与建议

限定检索结果

文献类型

  • 70 篇 期刊文献
  • 29 篇 会议

馆藏范围

  • 99 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 71 篇 工学
    • 51 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 20 篇 生物工程
    • 16 篇 信息与通信工程
    • 13 篇 光学工程
    • 10 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 化学工程与技术
    • 6 篇 交通运输工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 林业工程
    • 1 篇 安全科学与工程
  • 41 篇 理学
    • 20 篇 生物学
    • 15 篇 数学
    • 15 篇 物理学
    • 7 篇 化学
    • 5 篇 统计学(可授理学、...
    • 3 篇 系统科学
  • 10 篇 管理学
    • 6 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 8 篇 object detection
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 6 篇 deep neural netw...
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 deep learning
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 face recognition
  • 4 篇 convolution
  • 4 篇 computer vision
  • 3 篇 semantic segment...
  • 3 篇 task analysis
  • 3 篇 computer archite...
  • 3 篇 semantics
  • 3 篇 benchmarking
  • 3 篇 autonomous vehic...
  • 3 篇 shape

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 institute of dee...
  • 21 篇 national enginee...
  • 12 篇 beihang universi...
  • 8 篇 national enginee...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 baidu inc.
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 4 篇 institute of dee...
  • 3 篇 university of sc...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 5 篇 zhu yu
  • 5 篇 xiong hui
  • 5 篇 dingfu zhou
  • 5 篇 guodong guo

语言

  • 99 篇 英文
检索条件"机构=Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application"
99 条 记 录,以下是61-70 订阅
排序:
A unified object motion and affinity model for online Multi-Object Tracking
arXiv
收藏 引用
arXiv 2020年
作者: Yin, Junbo Wang, Wenguan Meng, Qinghao Yang, Ruigang Shen, Jianbing Beijing Lab of Intelligent Information Technology School of Computer Science Beijing Institute of Technology China ETH Zurich Switzerland Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China Inception Institute of Artificial Intelligence United Arab Emirates University of Kentucky Kentucky United States
Current popular online multi-object tracking (MOT) solutions apply single object trackers (SOTs) to capture object motions, while often requiring an extra affinity network to associate objects, especially for the occl... 详细信息
来源: 评论
Widerperson: A diverse dataset for dense pedestrian detection in the wild
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Shifeng Xie, Yiliang Wan, Jun Xia, Hansheng Li, Stan Z. Guo, Guodong Beijing China Macau University of Science and Technology China United States Nanjing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application
Pedestrian detection has achieved significant progress with the availability of existing benchmark datasets. However, there is a gap in the diversity and density between real world requirements and current pedestrian ... 详细信息
来源: 评论
A new method of region embedding for text classification  6
A new method of region embedding for text classification
收藏 引用
6th International Conference on learning Representations, ICLR 2018
作者: Qiao, Chao Huang, Bo Niu, Guocheng Li, Daren Dong, Daxiang He, Wei Yu, Dianhai Wu, Hua Baidu Inc. Beijing China National Engineering Laboratory of Deep Learning Technology and Application China
To represent a text as a bag of properly identified "phrases" and use the representation for processing the text is proved to be useful. The key question here is how to identify the phrases and represent the... 详细信息
来源: 评论
Intelligent exploration for user interface modules of mobile app with collective learning
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Jingbo Tang, Zhenwei Zhao, Min Ge, Xiang Zhuang, Fuzhen Zhou, Meng Zou, Liming Yang, Chenglei Xiong, Hui Business Intelligence Lab Baidu Research Baidu TPG User Experience Department China National Engineering Laboratory of Deep Learning Technology and Application China Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Beijing University of Posts and Telecommunications China Peking University China Shandong University China Rutgers University United States
A mobile app interface usually consists of a set of user interface modules. How to properly design these user interface modules is vital to achieving user satisfaction for a mobile app. However, there are few methods ... 详细信息
来源: 评论
Cross-ethnicity face anti-spoofing recognition challenge: A review
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ajian Li, Xuan Wan, Jun Liang, Yanyan Escalera, Sergio Escalante, Hugo Jair Madadi, Meysam Jin, Yi Wu, Zhuoyuan Yu, Xiaogang Tan, Zichang Yuan, Qi Yang, Ruikun Zhou, Benjia Guo, Guodong Li, Stan Z. Faculty of Information Technology Avenida WaiLong Taipa Macau China School of Computer and Information Technology Beijing Jiaotong University Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Science Beijing China Universitat de Barcelona and Computer Vision Center Barcelona Instituto Nacional de Astrofísica Óptica y Electrónica Puebla Mexico School of Software Beihang University Beijing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Beijing Westlake University Hangzhou China
Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has achieved impressive progress recently due the excellent performance of deep neural networks and t... 详细信息
来源: 评论
Semi-supervised hierarchical recurrent graph neural network for city-wide parking availability prediction
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Weijia Liu, Hao Liu, Yanchi Zhou, Jingbo Xiong, Hui University of Science and Technology of China Hefei China Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology and Application Beijing China Rutgers University United States
The ability to predict city-wide parking availability is crucial for the successful development of Parking Guidance and Information (PGI) systems. Indeed, the effective prediction of city-wide parking availability can... 详细信息
来源: 评论
Generalizing from a few examples: A survey on few-shot learning
arXiv
收藏 引用
arXiv 2019年
作者: WANG, YAQING YAO, QUANMING KWOK, JAMES T. NI, LIONEL M. Department of Computer Science and Engineering Hong Kong University of Science and Technology Business Intelligence Lab National Engineering Laboratory of Deep Learning Technology and Application Baidu Research 4Paradigm Inc.
Machine learning has been highly successful in data-intensive applications, but is often hampered when the data set is small. Recently, Few-Shot learning (FSL) is proposed to tackle this problem. Using prior knowledge... 详细信息
来源: 评论
Interactive grounded language acquisition and generalization in a 2D world  6
Interactive grounded language acquisition and generalization...
收藏 引用
6th International Conference on learning Representations, ICLR 2018
作者: Yu, Haonan Zhang, Haichao Xu, Wei Baidu Research Sunnyvale United States National Engineering Laboratory for Deep Learning Technology and Applications Beijing China
We build a virtual agent for learning language in a 2D maze-like world. The agent sees images of the surrounding environment, listens to a virtual teacher, and takes actions to receive rewards. It interactively learns... 详细信息
来源: 评论
GBCNs: Genetic Binary Convolutional Networks for enhancing the performance of 1-bit DCNNs
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Chunlei W., Ding Y., Hu B., Zhang J., Liu G., Guo School of Electronic and Information Engineering Beihang University Unmanned System Research Institute Beihang University School of Automation Science and Electrical Engineering Beihang University Shenzhen Institutes of Advanced Technology University of Chinese Academy of Sciences Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application
Training 1-bit deep convolutional neural networks (DCNNs) is one of the most challenging problems in computer vision, because it is much easier to get trapped into local minima than conventional DCNNs. The reason lies... 详细信息
来源: 评论
IoU loss for 2D/3D object detection
arXiv
收藏 引用
arXiv 2019年
作者: Zhou, Dingfu Fang, Jin Song, Xibin Guan, Chenye Yin, Junbo Dai, Yuchao Yang, Ruigang Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China Beijing Lab of Intelligent Information Technology School of Computer Science Beijing Institute of Technology China Northwestern Polytechnical University Xi'an China
In 2D/3D object detection task, Intersection-over-Union (IoU) has been widely employed as an evaluation metric to evaluate the performance of different detectors in the testing stage. However, during the training stag... 详细信息
来源: 评论