咨询与建议

限定检索结果

文献类型

  • 70 篇 期刊文献
  • 29 篇 会议
  • 1 册 图书

馆藏范围

  • 100 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 71 篇 工学
    • 51 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 20 篇 生物工程
    • 16 篇 信息与通信工程
    • 13 篇 光学工程
    • 10 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 化学工程与技术
    • 6 篇 交通运输工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 林业工程
    • 1 篇 安全科学与工程
  • 41 篇 理学
    • 20 篇 生物学
    • 15 篇 数学
    • 15 篇 物理学
    • 7 篇 化学
    • 5 篇 统计学(可授理学、...
    • 3 篇 系统科学
  • 10 篇 管理学
    • 6 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 8 篇 object detection
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 6 篇 deep neural netw...
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 deep learning
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 face recognition
  • 4 篇 convolution
  • 4 篇 computer vision
  • 3 篇 semantic segment...
  • 3 篇 task analysis
  • 3 篇 computer archite...
  • 3 篇 semantics
  • 3 篇 benchmarking
  • 3 篇 autonomous vehic...
  • 3 篇 shape

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 institute of dee...
  • 21 篇 national enginee...
  • 12 篇 beihang universi...
  • 8 篇 national enginee...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 baidu inc.
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 guodong guo
  • 5 篇 zhu yu
  • 5 篇 xiong hui
  • 5 篇 dingfu zhou

语言

  • 100 篇 英文
检索条件"机构=Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application"
100 条 记 录,以下是61-70 订阅
排序:
Bi-level Doubly Variational learning for Energy-based Latent Variable Models
arXiv
收藏 引用
arXiv 2022年
作者: Kan, Ge Lü, Jinhu Wang, Tian Zhang, Baochang Zhu, Aichun Huang, Lei Guo, Guodong Snoussi, Hichem School of Automation Science and Electrical Engineering Institue of Artificial Intelligence Beihang University Beijing China School of Computer Science and Technology Nanjing Tech University Nanjing China Institute of Deep Learning Baidu Research National Engineering Laboratory for Deep Learning Technology and Application Beijing China University of Technology of Troyes Troyes France
Energy-based latent variable models (EBLVMs) are more expressive than conventional energy-based models. However, its potential on visual tasks are limited by its training process based on maximum likelihood estimate t... 详细信息
来源: 评论
Multi-Modal Face Presentation Attack Detection  1
收藏 引用
丛书名: Synthesis Lectures on Computer Vision
1000年
作者: Jun Wan Guodong Guo Sergio Escalera Hugo Jair Escalante Stan Z. Li
来源: 评论
Bayesian Optimized 1-Bit CNNs
Bayesian Optimized 1-Bit CNNs
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Jiaxin Gu Junhe Zhao Xiaolong Jiang Baochang Zhang Jianzhuang Liu Guodong Guo Rongrong Ji Beihang University Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Huawei Noah’s Ark Lab China School of Information Science and Engineering Xiamen University Fujian China Peng Cheng Lab Shenzhen China
deep convolutional neural networks (DCNNs) have dominated the recent developments in computer vision through making various record-breaking models. However, it is still a great challenge to achieve powerful DCNNs in r... 详细信息
来源: 评论
Invisible for both Camera and LiDAR: Security of multi-sensor fusion based perception in autonomous driving under physical-world attacks
arXiv
收藏 引用
arXiv 2021年
作者: Cao, Yulong Wang, Ningfei Xiao, Chaowei Yang, Dawei Fang, Jin Yang, Ruigang Chen, Qi Alfred Liu, Mingyan Li, Bo University of California Irvine United States University of Michigan United States NVIDIA Research Arizona State University Inceptio Baidu Research and National Engineering Laboratory of Deep Learning Technology and Application China University of Illinois at Urbana-Champaign
In Autonomous Driving (AD) systems, perception is both security and safety critical. Despite various prior studies on its security issues, all of them only consider attacks on camera- or LiDAR-based AD perception alon... 详细信息
来源: 评论
Bayesian optimized 1-Bit CNNs
arXiv
收藏 引用
arXiv 2019年
作者: Gu, Jiaxin Zhao, Junhe Jiang, Xiaolong Zhang, Baochang Liu, Jianzhuang Guo, Guodong Ji, Rongrong Beihang University Beijing China Institute of Deep Learning Baidu Research Beijing China National Engineering Laboratory for Deep Learning Technology and Application Huawei Noah's Ark Lab China School of Information Science and Engineering Xiamen University Fujian China Peng Cheng Lab Shenzhen China
deep convolutional neural networks (DCNNs) have dominated the recent developments in computer vision through making various record-breaking models. However, it is still a great challenge to achieve powerful DCNNs in r... 详细信息
来源: 评论
ProposalContrast: Unsupervised Pre-training for LiDAR-based 3D Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Yin, Junbo Zhou, Dingfu Zhang, Liangjun Fang, Jin Xu, Cheng-Zhong Shen, Jianbing Wang, Wenguan School of Computer Science Beijing Institute of Technology China Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China SKL-IOTSC CIS University of Macau China ReLER AAII University of Technology Sydney Australia
Existing approaches for unsupervised point cloud pre-training are constrained to either scene-level or point/voxel-level instance discrimination. Scene-level methods tend to lose local details that are crucial for rec... 详细信息
来源: 评论
ApolloCar3D: A Large 3D Car Instance Understanding Benchmark for Autonomous Driving
arXiv
收藏 引用
arXiv 2018年
作者: Song, Xibin Wang, Peng Zhou, Dingfu Zhu, Rui Guan, Chenye Dai, Yuchao Su, Hao Li, Hongdong Yang, Ruigang Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China University of California San Diego United States Northwestern Polytechnical University Xi’an China Australian National University Australia Australian Centre for Robotic Vision Australia
Autonomous driving has attracted remarkable attention from both industry and academia. An important task is to estimate 3D properties (e.g. translation, rotation and shape) of a moving or parked vehicle on the road. T... 详细信息
来源: 评论
Channel Attention Based Iterative Residual learning for Depth Map Super-Resolution
Channel Attention Based Iterative Residual Learning for Dept...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Xibin Song Yuchao Dai Dingfu Zhou Liu Liu Wei Li Hongdong Li Ruigang Yang Baidu Research National Engineering Laboratory of Deep Learning Technology and Application China Northwestern Polytechnical University China Australian National University Australia Australian Centre for Robotic Vision Australia Shandong University China University of Kentucky Kentucky USA
Despite the remarkable progresses made in deep learning based depth map super-resolution (DSR), how to tackle real-world degradation in low-resolution (LR) depth maps remains a major challenge. Existing DSR model is g... 详细信息
来源: 评论
Semi-supervised 3D Object Detection with Proficient Teachers
arXiv
收藏 引用
arXiv 2022年
作者: Yin, Junbo Fang, Jin Zhou, Dingfu Zhang, Liangjun Xu, Cheng-Zhong Shen, Jianbing Wang, Wenguan School of Computer Science Beijing Institute of Technology China Baidu Research United States National Engineering Laboratory of Deep Learning Technology and Application China SKL-IOTSC Cis University of Macau China ReLER Aaii University of Technology Sydney Australia
Dominated point cloud-based 3D object detectors in autonomous driving scenarios rely heavily on the huge amount of accurately labeled samples, however, 3D annotation in the point cloud is extremely tedious, expensive ... 详细信息
来源: 评论
deep Feedforward Sequential Memory Networks Based Mispronunciation Detection for Tibetan Students' Mandarin  2
Deep Feedforward Sequential Memory Networks Based Mispronunc...
收藏 引用
2nd International Conference on Information Science and Education, ICISE-IE 2021
作者: Gan, Zhenye Zhao, Tianqin Yu, Xinke Yang, Hongwu College of Physics and Electronic Engineering Northwest Normal University Engineering Research Center of Gansu Province for Intelligent Information Technology and Application LanZhou China School of Educational Technology Northwest Normal University National and Local Joint Engineering Laboratory for Learning Analytics Technology of Internet Education Data LanZhou China
Computer assisted pronunciation training system (CAPT) can detect the wrong pronunciation produced by nonnative speakers and provide positive feedback. CAPT is helpful to improve the pronunciation level for L2 learner... 详细信息
来源: 评论