咨询与建议

限定检索结果

文献类型

  • 69 篇 期刊文献
  • 29 篇 会议
  • 1 册 图书

馆藏范围

  • 99 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 71 篇 工学
    • 51 篇 计算机科学与技术...
    • 49 篇 软件工程
    • 20 篇 生物工程
    • 16 篇 信息与通信工程
    • 13 篇 光学工程
    • 10 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 化学工程与技术
    • 6 篇 交通运输工程
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 纺织科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 林业工程
    • 1 篇 安全科学与工程
  • 41 篇 理学
    • 20 篇 生物学
    • 15 篇 数学
    • 15 篇 物理学
    • 7 篇 化学
    • 5 篇 统计学(可授理学、...
    • 3 篇 系统科学
  • 10 篇 管理学
    • 6 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理

主题

  • 8 篇 object detection
  • 8 篇 three-dimensiona...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 6 篇 deep neural netw...
  • 5 篇 solid modeling
  • 5 篇 object recogniti...
  • 4 篇 deep learning
  • 4 篇 large dataset
  • 4 篇 neural networks
  • 4 篇 face recognition
  • 4 篇 convolution
  • 4 篇 computer vision
  • 3 篇 semantic segment...
  • 3 篇 task analysis
  • 3 篇 computer archite...
  • 3 篇 semantics
  • 3 篇 benchmarking
  • 3 篇 autonomous vehic...
  • 3 篇 shape

机构

  • 27 篇 national enginee...
  • 22 篇 baidu research
  • 21 篇 institute of dee...
  • 21 篇 national enginee...
  • 12 篇 beihang universi...
  • 8 篇 national enginee...
  • 5 篇 institute of dee...
  • 5 篇 beijing lab of i...
  • 5 篇 university of ch...
  • 5 篇 northwestern pol...
  • 5 篇 institute of dee...
  • 4 篇 business intelli...
  • 4 篇 school of artifi...
  • 4 篇 university of ke...
  • 4 篇 baidu inc.
  • 4 篇 rutgers universi...
  • 4 篇 australian centr...
  • 4 篇 beijing institut...
  • 4 篇 nanjing universi...
  • 3 篇 university of sc...

作者

  • 32 篇 guo guodong
  • 12 篇 zhou dingfu
  • 11 篇 zhang baochang
  • 11 篇 yang ruigang
  • 10 篇 zhang liangjun
  • 10 篇 fang jin
  • 10 篇 song xibin
  • 9 篇 wu tianyi
  • 9 篇 wan jun
  • 8 篇 yin junbo
  • 7 篇 tan zichang
  • 7 篇 ruigang yang
  • 7 篇 xu wei
  • 7 篇 dai yuchao
  • 6 篇 li stan z.
  • 6 篇 wang peng
  • 6 篇 guodong guo
  • 5 篇 zhu yu
  • 5 篇 xiong hui
  • 5 篇 dingfu zhou

语言

  • 99 篇 英文
检索条件"机构=Baidu Research and National Engineering Laboratory of Deep Learning Technology and Application"
99 条 记 录,以下是81-90 订阅
排序:
Detailed human shape estimation from a single image by hierarchical mesh deformation
arXiv
收藏 引用
arXiv 2019年
作者: Zhu, Hao Zuo, Xinxin Wang, Sen Cao, Xun Yang, Ruigang Nanjing University Nanjing China University of Kentucky LexingtonKY United States Northwestern Polytechnical University Xi'an China Baidu Inc. Beijing China National Engineering Laboratory of Deep Learning and Technology and Application China
This paper presents a novel framework to recover detailed human body shapes from a single image. It is a challenging task due to factors such as variations in human shapes, body poses, and viewpoints. Prior methods ty... 详细信息
来源: 评论
CASIA-SURF: A Large-scale Multi-modal Benchmark for Face Anti-spoofing
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Shifeng Liu, Ajian Wan, Jun Liang, Yanyan Guo, Guogong Escalera, Sergio Escalante, Hugo Jair Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences University of Chinese Academy of Sciences Beijing China Macau University of Science and Technology Macau China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Universitat de Barcelona Computer Vision Center Barcelona Catalonia Instituto Nacional de Astrofsica Ptica y Electrnica Puebla72840 Mexico
Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, ... 详细信息
来源: 评论
Relaxed 2-D principal component analysis by Lpnorm for face recognition
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Xiao Jia, Zhi-Gang Cai, Yunfeng Zhao, Mei-Xiang School of Mathematics and Statistics Jiangsu Key Laboratory of Education Big Data Science and Engineering Jiangsu Normal University Xuzhou221116 China Baidu Research National Engineering Laboratory for Deep Learning Technology and Applications Beijing100193 China
A relaxed two dimensional principal component analysis (R2DPCA) approach is proposed for face recognition. Different to the 2DPCA, 2DPCA-L1 and G2DPCA, the R2DPCA utilizes the label information (if known) of training ... 详细信息
来源: 评论
$\mathsf{NCF}$NCF: A Neural Context Fusion Approach to Raw Mobility Annotation
收藏 引用
IEEE Transactions on Mobile Computing 2020年 第1期21卷 226-238页
作者: Renjun Hu Jingbo Zhou Xinjiang Lu Hengshu Zhu Shuai Ma Hui Xiong SKLSDE Lab Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology and Application Beijing China Talent Intelligence Center Baidu Inc. Beijing China Management Science and Information Systems Department Rutgers Business School Rutgers University Newark NJ USA
Understanding human mobility patterns at the point-of-interest (POI) scale plays an important role in enhancing business intelligence in mobile environments. While large efforts have been made in this direction, most ... 详细信息
来源: 评论
View extrapolation of human body from a single image
arXiv
收藏 引用
arXiv 2018年
作者: Zhu, Hao Su, Hao Wang, Peng Cao, Xun Yang, Ruigang Nanjing University Nanjing China University of Kentucky LexingtonKY United States University of California San DiegoCA United States Baidu Inc. Beijing China National Engineering Laboratory of Deep Learning and Technology and Application China
We study how to synthesize novel views of human body from a single image. Though recent deep learning based methods work well for rigid objects, they often fail on objects with large articulation, like human bodies. T... 详细信息
来源: 评论
deeply supervised depth map super-resolution as novel view synthesis
arXiv
收藏 引用
arXiv 2018年
作者: Song, Xibin Dai, Yuchao Qin, Xueying School of Computer Science and Technology Shandong University China Baidu Research Beijing China National Engineering Laboratory of Deep Learning Technology and Application China Shaanxi Key Lab of Information Acquisition and Processing School of Electronics and Information Northwestern Polytechnical University School of Software Shandong University China
deep convolutional neural network (DCNN) has been successfully applied to depth map super-resolution and outperforms existing methods by a wide margin. However, there still exist two major issues with these DCNN based... 详细信息
来源: 评论
A unified object motion and affinity model for online Multi-Object Tracking
arXiv
收藏 引用
arXiv 2020年
作者: Yin, Junbo Wang, Wenguan Meng, Qinghao Yang, Ruigang Shen, Jianbing Beijing Lab of Intelligent Information Technology School of Computer Science Beijing Institute of Technology China ETH Zurich Switzerland Baidu Research China National Engineering Laboratory of Deep Learning Technology and Application China Inception Institute of Artificial Intelligence United Arab Emirates University of Kentucky Kentucky United States
Current popular online multi-object tracking (MOT) solutions apply single object trackers (SOTs) to capture object motions, while often requiring an extra affinity network to associate objects, especially for the occl... 详细信息
来源: 评论
Robust 3D Face Alignment with Multi-Path Neural Architecture Search
Robust 3D Face Alignment with Multi-Path Neural Architecture...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Zhichao Jiang Hongsong Wang Xi Teng Baopu Li Institute of Deep Learning (IDL) Baidu Beijing China Department of Computer Science and Engineering Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications Southeast University Nanjing China Computer Vision Technology Institution Baidu Beijing China Baidu Research Baidu Sunnyvale USA
3D face alignment is a very challenging and fundamental problem in computer vision. Existing deep learning-based methods manually design different networks to regress either parameters of a 3D face model or 3D positio... 详细信息
来源: 评论
Q-ViT: accurate and fully quantized low-bit vision transformer  22
Q-ViT: accurate and fully quantized low-bit vision transform...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Yanjing Li Sheng Xu Baochang Zhang Xianbin Cao Peng Gao Guodong Guo Beihang University Beijing P.R.China Beihang University Beijing P.R.China and Zhongguancun Laboratory Beijing P.R.China Shanghai Artificial Intelligence Laboratory Shanghai P.R.China Institute of Deep Learning Baidu Research Beijing P.R.China and National Engineering Laboratory for Deep Learning Technology and Application Beijing P.R.China
The large pre-trained vision transformers (ViTs) have demonstrated remarkable performance on various visual tasks, but suffer from expensive computational and memory cost problems when deployed on resource-constrained...
来源: 评论
Intelligent exploration for user interface modules of mobile app with collective learning
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Jingbo Tang, Zhenwei Zhao, Min Ge, Xiang Zhuang, Fuzhen Zhou, Meng Zou, Liming Yang, Chenglei Xiong, Hui Business Intelligence Lab Baidu Research Baidu TPG User Experience Department China National Engineering Laboratory of Deep Learning Technology and Application China Institute of Computing Technology CAS Beijing China University of Chinese Academy of Sciences Beijing China Beijing University of Posts and Telecommunications China Peking University China Shandong University China Rutgers University United States
A mobile app interface usually consists of a set of user interface modules. How to properly design these user interface modules is vital to achieving user satisfaction for a mobile app. However, there are few methods ... 详细信息
来源: 评论