咨询与建议

限定检索结果

文献类型

  • 258 篇 期刊文献
  • 192 篇 会议

馆藏范围

  • 450 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 302 篇 工学
    • 202 篇 计算机科学与技术...
    • 175 篇 软件工程
    • 59 篇 信息与通信工程
    • 51 篇 控制科学与工程
    • 45 篇 生物工程
    • 41 篇 电子科学与技术(可...
    • 34 篇 机械工程
    • 25 篇 电气工程
    • 24 篇 光学工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 交通运输工程
    • 17 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 9 篇 动力工程及工程热...
    • 9 篇 建筑学
    • 8 篇 安全科学与工程
  • 219 篇 理学
    • 108 篇 数学
    • 60 篇 物理学
    • 48 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 26 篇 系统科学
    • 18 篇 化学
  • 72 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 34 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 18 篇 法学
    • 18 篇 社会学
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 19 篇 graph neural net...
  • 15 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 10 篇 semantics
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 conferences
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 synchronization
  • 6 篇 forecasting
  • 5 篇 object detection
  • 5 篇 face recognition

机构

  • 215 篇 beijing advanced...
  • 64 篇 beijing advanced...
  • 34 篇 school of comput...
  • 24 篇 school of econom...
  • 19 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 13 篇 peng cheng labor...
  • 8 篇 school of softwa...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 beihang universi...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...
  • 7 篇 beijing advanced...
  • 7 篇 fert beijing ins...
  • 7 篇 institute of inf...

作者

  • 41 篇 peng hao
  • 41 篇 li jianxin
  • 23 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 14 篇 weisheng zhao
  • 13 篇 fu xingcheng
  • 13 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 yunhong wang
  • 11 篇 hao peng
  • 11 篇 zhao jichang
  • 11 篇 he lifang
  • 10 篇 jianxin li
  • 10 篇 ji cheng

语言

  • 436 篇 英文
  • 7 篇 其他
  • 7 篇 中文
检索条件"机构=Beijing Advanced Institution on Big Data and Brain Computing"
450 条 记 录,以下是151-160 订阅
排序:
Intelligent safety monitoring and early warning system for construction site  20
Intelligent safety monitoring and early warning system for c...
收藏 引用
2nd World Symposium on Software Engineering, WSSE 2020
作者: Hu, Zheyuan Cai, Jun Wang, Huiwei Zhang, Dehao Liu, Yang Li, Xin Li, Yanlong Zhao, Fengyan Zhang, Hongjun Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Shanxi zhen'An Pumped Storage Co. Ltd Shanxi711500 China Beijing Nelda Technology Co. Ltd. Beijing100194 China
Faced with the complex environment and difficult construction of infrastructure projects, designing an intelligent safety monitoring and early warning system for construction sites can effectively detect existing viol... 详细信息
来源: 评论
Recent advances in distributed adaptive consensus control of uncertain nonlinear multi-agent systems
收藏 引用
Journal of Control and Decision 2020年 第1期7卷 44-63页
作者: Wei Wang Jiang Long Changyun Wen Jiangshuai Huang School of Automation Science and Electrical Engineering Beihang UniversityBeijing 100191People’s Republic of China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang UniversityBeijing 100191People’s Republic of China School of Electrical and Electronic Engineering Nanyang Technological UniversitySingaporeSingapore School of Automation Chongqing UniversityChongqingPeople’s Republic of China
So far,distributed adaptive consensus problems for uncertain nonlinear multi-agent systems have not yet been extensively *** with centralised adaptive control,some new challenges need to be well addressed,for examples... 详细信息
来源: 评论
Structured probabilistic end-to-end learning from crowds  29
Structured probabilistic end-to-end learning from crowds
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Chen, Zhijun Wang, Huimin Sun, Hailong Chen, Pengpeng Han, Tao Liu, Xudong Yang, Jie SKLSDE Lab School of Computer Science and Engineering Beihang University China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China Web Information Systems Delft University of Technology Netherlands
End-to-end learning from crowds has recently been introduced as an EM-free approach to training deep neural networks directly from noisy crowdsourced annotations. It models the relationship between true labels and ann... 详细信息
来源: 评论
Automated Classification of Attacker Privileges Based on Deep Neural Network  1
收藏 引用
4th International Conference on Smart computing and Communications, SmartCom 2019
作者: Liu, Hailong Li, Bo Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
Attack graphs generated from the detected vulnerabilities in a network depict all possible attack paths that an intruder can take. Conventional approaches to generating attack graphs require well-categorized data of p... 详细信息
来源: 评论
Comprehensive Characteristic Decomposition of Parametric Polynomial Systems  21
Comprehensive Characteristic Decomposition of Parametric Pol...
收藏 引用
46th International Symposium on Symbolic and Algebraic Computation, ISSAC 2021
作者: Dong, Rina Lu, Dong Mou, Chenqi Wang, Dongming Chongqing Key Laboratory of Automated Reasoning and Cognition Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing400714 China Beijing Advanced Innovation Center for Big Data and Brain Computing School of Mathematical Sciences Beihang University Beijing100191 China LMIB-School of Mathematical Sciences Beihang University Beijing100191 China Centre National de la Recherche Scientifique Paris cedex 1675794 France
This paper presents an algorithm that decomposes an arbitrary set F of multivariate polynomials involving parameters into finitely many sets Gi of (lexicographical) Gröbner bases G ij such that associated with ea... 详细信息
来源: 评论
Multi-scale Hierarchy Feature Fusion Generative Adversarial Network for Low-Dose CT Denoising  20
Multi-scale Hierarchy Feature Fusion Generative Adversarial ...
收藏 引用
Proceedings of the 2020 9th International Conference on Bioinformatics and Biomedical Science
作者: Ying Bai Haifeng Zhao Shaojie Zhang Dong Nie Zhenyu Tang School of Computer Science and Technology Anhui University Department of Computer Science University of North Carolina at Chapel Hill Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
Image noise is an inherent issue in low-dose CT (LDCT). Increasing radiation dose can alleviate this problem to some extent, but it also brings potential risks to the patients. Thus, LDCT denoising has raised increasi... 详细信息
来源: 评论
Secure data Transmission of Smart Home Networks Based on Information Hiding  1
收藏 引用
2nd International Conference on Pattern Recognition and Artificial Intelligence, ICPRAI 2020
作者: Deng, Haiyu Yang, Lina Dang, Xiaocui Tang, Yuan Yan Wang, Patrick School of Computer Electronics and Information Guangxi University Nanning530004 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Computer and Information Science Northeastern University Boston02115 United States
Smart home is an emerging form of the Internet of things (IoT), which can enable people to master the conditions of their smart homes remotely. However, privacy leaking in smart home network is neglected. Therefore, i... 详细信息
来源: 评论
Stabilization of Continuous-Time Markov/Semi-Markov Jump Linear Systems Via Finite data-Rate Feedback
SSRN
收藏 引用
SSRN 2022年
作者: Wang, Jingyi Feng, Jianwen Xu, Chen Wu, Xiaoqun Lü, Jinhu College of Mathematics and Statistics Shenzhen University Shenzhen518060 China School of Mathematics and Statistics Hubei Key Laboratory of Computational Science Wuhan University Wuhan China State Key Laboratory of Software Development Environment School of Automation Science and Electrical Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
This letter investigates almost sure exponential stabilization of continuous-time Markov jump linear systems (MJLSs) under communication data-rate constraints by introducing sampling and quantization into the feedback... 详细信息
来源: 评论
Collective firing patterns of neuronal networks with short-term synaptic plasticity
收藏 引用
Physical Review E 2021年 第2期103卷 022312-022312页
作者: Chong-Yang Wang Ji-Qiang Zhang Zhi-Xi Wu Jian-Yue Guan Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province Lanzhou University Lanzhou Gansu 730000 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing 100191 China School of Physics and Electronic-Electrical Engineering Ningxia University Yinchuan 750021 China
We investigate the occurrence of synchronous population activities in a neuronal network composed of both excitatory and inhibitory neurons and equipped with short-term synaptic plasticity. The collective firing patte... 详细信息
来源: 评论
A novel in-memory computing scheme based on toggle spin torque MRAM  20
A novel in-memory computing scheme based on toggle spin torq...
收藏 引用
30th Great Lakes Symposium on VLSI, GLSVLSI 2020
作者: Bai, Yining Zhang, Yue Wang, Jinkai Wang, Guanda Zhang, Zhizhong Zheng, Zhenyi Zhang, Kun Zhao, Weisheng Fert Beijing Institute School of Microelectronics Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China Nanoelectronics Science and Technology Center Hefei Innovation Research Institute Beihang University Hefei China School of Electronics Engineering Beihang University Beijing China
This paper proposes a novel in-memory computing (IMC) scheme based on toggle spin torque magnetic random access memory (TST-MRAM), called TST-IMC, which makes full use of the unique TST writing mechanism. In this sche... 详细信息
来源: 评论