咨询与建议

限定检索结果

文献类型

  • 258 篇 期刊文献
  • 192 篇 会议

馆藏范围

  • 450 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 302 篇 工学
    • 202 篇 计算机科学与技术...
    • 174 篇 软件工程
    • 59 篇 信息与通信工程
    • 52 篇 控制科学与工程
    • 45 篇 生物工程
    • 41 篇 电子科学与技术(可...
    • 34 篇 机械工程
    • 25 篇 电气工程
    • 24 篇 光学工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 交通运输工程
    • 17 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 9 篇 动力工程及工程热...
    • 9 篇 建筑学
  • 218 篇 理学
    • 107 篇 数学
    • 60 篇 物理学
    • 48 篇 生物学
    • 32 篇 统计学(可授理学、...
    • 26 篇 系统科学
    • 18 篇 化学
  • 72 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 34 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 17 篇 法学
    • 17 篇 社会学
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 19 篇 graph neural net...
  • 15 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 10 篇 semantics
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 conferences
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 synchronization
  • 6 篇 forecasting
  • 5 篇 object detection
  • 5 篇 face recognition

机构

  • 215 篇 beijing advanced...
  • 64 篇 beijing advanced...
  • 34 篇 school of comput...
  • 24 篇 school of econom...
  • 19 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 13 篇 peng cheng labor...
  • 8 篇 school of softwa...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 beihang universi...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...
  • 7 篇 beijing advanced...
  • 7 篇 fert beijing ins...
  • 7 篇 institute of inf...

作者

  • 41 篇 peng hao
  • 41 篇 li jianxin
  • 23 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 14 篇 weisheng zhao
  • 13 篇 fu xingcheng
  • 13 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 yunhong wang
  • 11 篇 hao peng
  • 11 篇 zhao jichang
  • 11 篇 he lifang
  • 10 篇 jianxin li
  • 10 篇 ji cheng

语言

  • 435 篇 英文
  • 8 篇 其他
  • 7 篇 中文
检索条件"机构=Beijing Advanced Institution on Big Data and Brain Computing"
450 条 记 录,以下是51-60 订阅
排序:
data-Driven Intersection Safety Evaluation Methodology and Analysis  23
Data-Driven Intersection Safety Evaluation Methodology and A...
收藏 引用
23rd COTA International Conference of Transportation Professionals: Emerging data-Driven Sustainable Technological Innovation in Transportation, CICTP 2023
作者: Wu, Pingping Lu, Guangquan Liu, Miaomiao Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control School of Transportation Science and Engineering Beihang Univ. Beijing China Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control School of Transportation Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang Univ. Beijing China Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies Southeast Univ. Nanjing China
With the development of information and sensing technologies, a wide variety of intersection traffic data is available. The purpose of this paper is to make full use of video and commercial vehicle trajectory data to ... 详细信息
来源: 评论
Physics-inspired Machine Learning for Quantum Error Mitigation
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Xiao-Yue Xue, Xin Chen, Tianyu Ding, Chen Li, Tian Zhou, Haoyi Huang, He-Liang Bao, Wan-Su Henan Key Laboratory of Quantum Information and Cryptography Zhengzhou Henan450000 China Department of Computer Science Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing100191 China Department of Software Beihang University Beijing100191 China
Noise is a major obstacle in current quantum computing, and Machine Learning for Quantum Error Mitigation (ML-QEM) promises to address this challenge, enhancing computational accuracy while reducing the sampling overh... 详细信息
来源: 评论
AutoST: towards the universal modeling of spatio-temporal sequences  22
AutoST: towards the universal modeling of spatio-temporal se...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Jianxin Li Shuai Zhang Hui Xiong Haoyi Zhou Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Hong Kong University of Science and Technology (Guangzhou) Guangzhou HKUST Fok Ying Tung Research Institute Guangzhou China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
The analysis of spatio-temporal sequences plays an important role in many real-world applications, demanding a high model capacity to capture the interdependence among spatial and temporal dimensions. Previous studies...
来源: 评论
Triplet-Aware Graph Neural Networks for Factorized Multi-Modal Knowledge Graph Entity Alignment
SSRN
收藏 引用
SSRN 2023年
作者: Li, Qian Li, Jianxin Wu, Jia Peng, Xutan Ji, Cheng Peng, Hao Wang, Lihong Yu, Philip S. Beijing Advanced Innovation Center for Big Data and Brain Computing China Beijing China School of Computing Macquarie University Sydney Australia The University of Sheffield South Yorkshire United Kingdom China University of Illinois Chicago Chicago United States
Multi-Modal Entity Alignment (MMEA), aiming to discover matching entity pairs on two multi-modal knowledge graphs (MMKGs), is an essential task in knowledge graph fusion. Through mining feature information of MMKGs, e... 详细信息
来源: 评论
Personalized Federated Learning with Collaborative Aggregation Networks for Multi-Site brain Disorder Diagnosis
Personalized Federated Learning with Collaborative Aggregati...
收藏 引用
Industrial Automation, Robotics and Control Engineering (IARCE), International Conference on
作者: Qian Si Yang Li School of Cyber Science and Technology Beihang University Beijing China Department of Automation Science and Electrical Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing State Key Laboratory of Virtual Reality Technology and Systems Advanced Institute of Information Technology Peking University Beihang University Beijing China
In multi-site brain disease diagnosis studies, traditional centralized training methods necessitate sharing medical data, posing significant privacy risks. Federated learning (FL) offers a privacy-preserving solution ... 详细信息
来源: 评论
Machine-learning-assisted intelligent synthesis of UiO-66(Ce):Balancing the trade-off between structural defects and thermal stability for e hydrogenation of Dicyclopentadiene
收藏 引用
Materials Genome Engineering Advances 2024年 第3期2卷 96-106页
作者: Jing Lin Tao Ban Tian Li Ye Sun Shenglan Zhou Rushuo Li Yanjing Su Jitti Kasemchainan Hongyi Gao Lei Shi Ge Wang Beijing Key Laboratory of Function Materials for Molecule&Structure Construction Beijing Advanced Innovation Center for Materials Genome EngineeringSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina Beijing Advanced Innovation Center for Big Data and Brain Computing School of Computer Science and EngineeringBeihang UniversityBeijingChina Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and TechnologySchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina Department of Chemical Technology Chulalongkorn UniversityBangkokThailand
Metal-organic frameworks(MOFs),renowned for structural diversity and design flexibility,exhibit potential in ***,the pursuit of higher catalytic activity through defects often compromises stability,requiring a delicat... 详细信息
来源: 评论
Motion Forecasting for Autonomous Vehicles: A Survey
arXiv
收藏 引用
arXiv 2025年
作者: Shi, Jianxin Chen, Jinhao Wang, Yuandong Sun, Li Liu, Chunyang Xiong, Wei Wo, Tianyu Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Information Engineering College Capital Normal University Beijing100048 China School of Control and Computer Engineering North China Electric Power University Beijing102206 China Didi Chuxing Beijing100094 China
In recent years, the field of autonomous driving has attracted increasingly significant public interest. Accurately forecasting the future behavior of various traffic participants is essential for the decision-making ... 详细信息
来源: 评论
Find truth in the hands of the few:acquiring specific knowledge with crowdsourcing
收藏 引用
Frontiers of Computer Science 2021年 第4期15卷 5-16页
作者: Tao HAN Hailong SUN Yangqiu SONG Yili FANG Xudong LIU SKLSDE Lab School of Computer Science and EngineeringBeihang UniversityBeijing 100191China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang UniversityBeijing 100191China Department of Computer Science and Engineering Hong Kong University of Science and TechnologyClearwater BayHong Kong 999077China School of Computer and Information Engineering Zhejiang Gongshang UniversityHangzhou 310018China
Crowdsourcing has been a helpful mechanism to leverage human intelligence to acquire useful ***,when we aggregate the crowd knowledge based on the currently developed voting algorithms,it often results in common knowl... 详细信息
来源: 评论
Domain-Invariant Feature Progressive Distillation with Adversarial Adaptive Augmentation for Low-Resource Cross-Domain NER
Domain-Invariant Feature Progressive Distillation with Adver...
收藏 引用
作者: Zhang, Tao Xia, Congying Liu, Zhiwei Zhao, Shu Peng, Hao Yu, Philip Department of Computer Science University of Illinois at Chicago 851 South Morgan Street ChicagoIL60607-7053 United States School of Computer Science and Technology Anhui University No. 111 Jiulong Road Hefei Anhui230601 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University No. 37 Xue Yuan Road Haidian District Beijing100191 China
Considering the expensive annotation in Named Entity Recognition (NER), Cross-domain NER enables NER in low-resource target domains with few or without labeled data, by transferring the knowledge of high-resource doma... 详细信息
来源: 评论
Multi-Modal Knowledge Graph Transformer Framework for Multi-Modal Entity Alignment
arXiv
收藏 引用
arXiv 2023年
作者: Li, Qian Ji, Cheng Guo, Shu Liang, Zhaoji Wang, Lihong Li, Jianxin School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing China National Computer Network Emergency Response Technical Team Coordination Center of China China
Multi-Modal Entity Alignment (MMEA) is a critical task that aims to identify equivalent entity pairs across multi-modal knowledge graphs (MMKGs). However, this task faces challenges due to the presence of different ty... 详细信息
来源: 评论