咨询与建议

限定检索结果

文献类型

  • 258 篇 期刊文献
  • 192 篇 会议

馆藏范围

  • 450 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 302 篇 工学
    • 202 篇 计算机科学与技术...
    • 175 篇 软件工程
    • 59 篇 信息与通信工程
    • 51 篇 控制科学与工程
    • 45 篇 生物工程
    • 41 篇 电子科学与技术(可...
    • 34 篇 机械工程
    • 25 篇 电气工程
    • 24 篇 光学工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 交通运输工程
    • 17 篇 化学工程与技术
    • 12 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 9 篇 动力工程及工程热...
    • 9 篇 建筑学
    • 8 篇 安全科学与工程
  • 219 篇 理学
    • 108 篇 数学
    • 60 篇 物理学
    • 48 篇 生物学
    • 33 篇 统计学(可授理学、...
    • 26 篇 系统科学
    • 18 篇 化学
  • 72 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 34 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 18 篇 法学
    • 18 篇 社会学
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 19 篇 graph neural net...
  • 15 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 10 篇 semantics
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 conferences
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 synchronization
  • 6 篇 forecasting
  • 5 篇 object detection
  • 5 篇 face recognition

机构

  • 215 篇 beijing advanced...
  • 64 篇 beijing advanced...
  • 34 篇 school of comput...
  • 24 篇 school of econom...
  • 19 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 13 篇 peng cheng labor...
  • 8 篇 school of softwa...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 beihang universi...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...
  • 7 篇 beijing advanced...
  • 7 篇 fert beijing ins...
  • 7 篇 institute of inf...

作者

  • 41 篇 peng hao
  • 41 篇 li jianxin
  • 23 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 14 篇 weisheng zhao
  • 13 篇 fu xingcheng
  • 13 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 yunhong wang
  • 11 篇 hao peng
  • 11 篇 zhao jichang
  • 11 篇 he lifang
  • 10 篇 jianxin li
  • 10 篇 ji cheng

语言

  • 436 篇 英文
  • 7 篇 其他
  • 7 篇 中文
检索条件"机构=Beijing Advanced Institution on Big Data and Brain Computing"
450 条 记 录,以下是61-70 订阅
排序:
Hybrid Resource Orchestration and Scheduling for Cyber-Physical-Human Systems  22
Hybrid Resource Orchestration and Scheduling for Cyber-Physi...
收藏 引用
22nd IEEE International Conference on High Performance computing and Communications, 18th IEEE International Conference on Smart City and 6th IEEE International Conference on data Science and Systems, HPCC-SmartCity-DSS 2020
作者: Zhu, Jianyong Wang, Xu Wo, Tianyu Hu, Chunming Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing China
Recently Cyber-Physical-Human Systems (CPHS) have been attracted much attention. Unlike existing computing paradigms such as Cloud computing and Edge computing, CPHS usually comprise many types of hybrid resources suc... 详细信息
来源: 评论
Identifying spatiotemporal traffic patterns in large-scale urban road networks using a modified nonnegative matrix factorization algorithm
收藏 引用
Journal of Traffic and Transportation Engineering(English Edition) 2020年 第4期7卷 529-539页
作者: Xiaolei Ma Yi Li Peng Chen School of Transportation Science and Engineering Beihang UniversityBeijing 100191China Beiing Advanced Innovation Center for Big Data and Brain Computing Beihang UniversityBeiing 100191China
The identification and analysis of spatiotemporal traffic patterns in road networks constitute a crucial process for sophisticated traffic management and *** methods based on mathematical equations and statistical mod... 详细信息
来源: 评论
Dual Contrastive Learning: Text Classification via Label-Aware data Augmentation
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Qianben Zhang, Richong Zheng, Yaowei Mao, Yongyi SKLSDE School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Institution on Big Data and Brain Computing Beihang University Beijing China School of Electrical Engineering and Computer Science University of Ottawa Ottawa Canada
Contrastive learning has achieved remarkable success in representation learning via self-supervision in unsupervised settings. However, effectively adapting contrastive learning to supervised learning tasks remains as... 详细信息
来源: 评论
Poincaré Differential Privacy for Hierarchy-Aware Graph Embedding
arXiv
收藏 引用
arXiv 2023年
作者: Wei, Yuecen Yuan, Haonan Fu, Xingcheng Sun, Qingyun Peng, Hao Li, Xianxian Hu, Chunming Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China School of Software Beihang University Beijing China Key Lab of Education Blockchain and Intelligent Technology Ministry of Education Guangxi Normal University China
Hierarchy is an important and commonly observed topological property in real-world graphs that indicate the relationships between supervisors and subordinates or the organizational behavior of human groups. As hierarc... 详细信息
来源: 评论
Autonomous On-ramp Merge Strategy Using Deep Reinforcement Learning in Uncertain Highway Environment
Autonomous On-ramp Merge Strategy Using Deep Reinforcement L...
收藏 引用
2022 IEEE International Conference on Unmanned Systems, ICUS 2022
作者: Wu, Sifan Tian, Daxin Zhou, Jianshan Duan, Xuting Sheng, Zhengguo Zhao, Dezong Beijing Key Laboratory For Cooperative Vehicle Infrastructure Systems&Safety Cooperative Control Beijing China Beijing Advanced Innovation Center For Big Data and Brain Computing Beijing China Department of Engineering and Design Richmond United Kingdom University of Sussex Richmond United Kingdom James Watt School of Engineering Glasgow United Kingdom University of Glasgow Glasgow United Kingdom
On-ramp merge is a complex traffic scenario in autonomous driving. Because of the uncertainty of the driving environment, most rule-based models cannot solve such a problem. In this study, we design a Deep Reinforceme... 详细信息
来源: 评论
Graph algorithms: parallelization and scalability
收藏 引用
Science China(Information Sciences) 2020年 第10期63卷 234-254页
作者: Wenfei FAN Kun HE Qian LI Yue WANG School of Informatics University of Edinburgh Shenzhen Institute of Computing Sciences Shenzhen University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Guangdong Province Key Laboratory of Popular High Performance Computers Shenzhen University
For computations on large-scale graphs, one often resorts to parallel algorithms. However, parallel algorithms are difficult to write, debug and analyze. Worse still, it is difficult to make algorithms parallelly scal... 详细信息
来源: 评论
BiKT: Unleashing the potential of GNNs via Bi-directional Knowledge Transfer
arXiv
收藏 引用
arXiv 2023年
作者: Zheng, Shuai Liu, Zhizhe Zhu, Zhenfeng Zhang, Xingxing Li, Jianxin Zhao, Yao The Institute of Information Science Beijing Jiaotong University Beijing100044 China The Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China Qiyuan Lab Beijing China The Beijing Advanced Innovation Center for Big Data and Brain Computing School of Computer Science and Engineering Beihang University Beijing100083 China
Based on the message-passing paradigm, there has been an amount of research proposing diverse and impressive feature propagation mechanisms to improve the performance of GNNs. However, less focus has been put on featu... 详细信息
来源: 评论
Real-time partitioned scheduling: Exploiting the inter-resource affinity for task allocation on multiprocessors
Real-time partitioned scheduling: Exploiting the inter-resou...
收藏 引用
作者: Akram, Naveed Li, Jianxin Bai, Yan Zhang, Yangyang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China School of Computer Science and Engineering Beihang University Beijing China School of Engineering and Technology University of Washington Tacoma WA United States
Real-time edge computing is forging its place in cloud computing rapidly, and requirements for high-performance edge devices are becoming increasingly complex. Multiprocessor edge devices are an attractive choice to m... 详细信息
来源: 评论
An Agent-Based Approach for Time-Series Momentum and Reversal
收藏 引用
Journal of Systems Science & Complexity 2020年 第2期33卷 461-474页
作者: WANG Zhaoyuan LIU Shancun YANG Haijun WU Harris School of Economics and Management Beihang UniversityBeijing 100191China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang UniversityBeijing 100191China College of Business and Public Administration Old Dominion UniversityNorfolkVirginiaUSA
This paper proposes a novel agent-based model combining private information diffusion to explain time-series momentum and *** information transmission allows heterogeneous trading strategies coexist in the artificial ... 详细信息
来源: 评论
Fast Robot Hierarchical Exploration Based on Deep Reinforcement Learning
Fast Robot Hierarchical Exploration Based on Deep Reinforcem...
收藏 引用
International Wireless Communications and Mobile computing Conference, IWCMC
作者: Shun Zuo Jianwei Niu Lu Ren Zhenchao Ouyang State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC) Beihang University Beijing China Beihang Hangzhou Innovation Institute Yuhang Beihang University Beijing China
This paper investigates the use of reinforcement learning for autonomous exploration in an unknown environment. Autonomous exploration is crucial in many situations, such as urban search, security inspection, environm...
来源: 评论