咨询与建议

限定检索结果

文献类型

  • 291 篇 期刊文献
  • 198 篇 会议

馆藏范围

  • 489 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 207 篇 计算机科学与技术...
    • 179 篇 软件工程
    • 57 篇 信息与通信工程
    • 54 篇 控制科学与工程
    • 48 篇 生物工程
    • 43 篇 电子科学与技术(可...
    • 38 篇 机械工程
    • 28 篇 光学工程
    • 26 篇 电气工程
    • 24 篇 生物医学工程(可授...
    • 21 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 13 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 10 篇 动力工程及工程热...
    • 10 篇 建筑学
    • 8 篇 土木工程
  • 229 篇 理学
    • 110 篇 数学
    • 63 篇 物理学
    • 54 篇 生物学
    • 34 篇 统计学(可授理学、...
    • 28 篇 系统科学
    • 20 篇 化学
  • 70 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 31 篇 医学
    • 28 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
  • 3 篇 教育学
  • 2 篇 农学
  • 2 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 20 篇 graph neural net...
  • 14 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 9 篇 semantics
  • 9 篇 synchronization
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 forecasting
  • 5 篇 conferences
  • 5 篇 object detection
  • 5 篇 face recognition

机构

  • 214 篇 beijing advanced...
  • 63 篇 beijing advanced...
  • 37 篇 school of comput...
  • 24 篇 school of econom...
  • 20 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 14 篇 peng cheng labor...
  • 10 篇 school of softwa...
  • 9 篇 beihang universi...
  • 8 篇 anhui high relia...
  • 8 篇 school of mathem...
  • 8 篇 school of integr...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 state key labora...
  • 8 篇 department of ne...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...

作者

  • 43 篇 peng hao
  • 42 篇 li jianxin
  • 23 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 15 篇 weisheng zhao
  • 14 篇 fu xingcheng
  • 14 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 yunhong wang
  • 11 篇 jianxin li
  • 11 篇 ji cheng
  • 11 篇 hao peng
  • 11 篇 zhao jichang
  • 11 篇 he lifang

语言

  • 468 篇 英文
  • 11 篇 中文
  • 10 篇 其他
检索条件"机构=Beijing Advanced.Innovation Center for Big Data and Brain Computing"
489 条 记 录,以下是111-120 订阅
排序:
A multicenter single-arm objective performance criteria trial evaluating the efficacy and safety of a dedicated venous sinus thrombectomy device for severe cerebral venous sinus thrombosis
收藏 引用
Neuroprotection 2024年 第4期2卷 318-328页
作者: Shadamu Yusuying Yan Wu Ming Li Jiangang Duan Jian Chen Yujiao Chen Chen Zhou Hetao Bian Chuanhui Li Chuanjie Wu Ran Meng Xunming Ji Department of Neurosurgery Xuanwu HospitalCapital Medical UniversityBeijingChina Department of China-America Institute of Neuroscience Xuanwu HospitalCapital Medical UniversityBeijingChina Emergency Department Xuanwu HospitalCapital Medical UniversityBeijingChina Department of Blood Transfusion Beijing Jishuitan HospitalBeijingChina Laboratory of Brain Disorders Ministry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersBeijing Advanced Innovation Center for Big Data-based Precision MedicineCapital Medical UniversityBeijingChina Department of Neurology Stroke CenterXuanwu HospitalCapital Medical UniversityBeijingChina Department of Neurology Xuanwu HospitalCapital Medical UniversityBeijingChina
Aim:Approximately 21%of patients with cerebral venous sinus thrombosis(CVST)are refractory to anticoagulation treatment and face poor *** patients may benefit from endovascular *** numerous studies have reported promi... 详细信息
来源: 评论
Real-time bottleneck matching in spatial crowdsourcing
收藏 引用
Science China(Information Sciences) 2021年 第8期64卷 233-234页
作者: Long LI Lingling WANG Weifeng LV State Key Laboratory of Software Development Environment (SKLSDE Lab) and Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC) Beihang University School of Management and Economics Beijing Institute of Technology
Dear editor,Spatial crowdsourcing(SC) services(e.g., Uber, DiDi, and Meituan) have become popular with smart-phone ***, the online matching problems in real-time spatial data are a key issue in SC [1–4]. Unlike the c... 详细信息
来源: 评论
Coupled Alternating Neural Networks for Solving Multi-Population High-Dimensional Mean-Field Games with Stochasticity
TechRxiv
收藏 引用
TechRxiv 2022年
作者: Wang, Guofang Yao, Wang Zhang, Xiao Niu, Zijia The School of Mathematical Sciences Beihang University Beijing100191 China Key Laboratory of Mathematics Informatics and Behavioral Semantics Ministry of Education Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Peng Cheng Laboratory Guangdong Shenzhen518055 China The Institute of Artificial Intelligence Beihang University Beijing100191 China Key Laboratory of Mathematics Informatics and Behavioral Semantics Ministry of Education Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
Multi-population mean-field game is a critical subclass of mean-field games (MFGs). It is a theoretically feasible multi-agent model for simulating and analyzing the game between multiple heterogeneous populations of ... 详细信息
来源: 评论
I4R: Promoting deep reinforcement learning by the indicator for expressive representations  29
I4R: Promoting deep reinforcement learning by the indicator ...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Luo, Xufang Meng, Qi He, Di Chen, Wei Wang, Yunhong Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Microsoft Research Beijing China School of EECS Peking University China
Learning expressive representations is always crucial for well-performed policies in deep reinforcement learning (DRL). Different from supervised learning, in DRL, accurate targets are not always available, and some i... 详细信息
来源: 评论
Driving Behavior Model for Multi-Vehicle Interaction at Uncontrolled Intersections Based on Risk Field Considering Drivers' Visual Field Characteristics
SSRN
收藏 引用
SSRN 2022年
作者: Wang, Zhaojie Lu, Guangquan Tan, Haitian Beijing Key Laboratory for Cooperative Vehicle Infrastructure System and Safety Control Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Beihang University Beijing100191 China
At uncontrolled intersections, drivers face a more complex traffic environment. The interactions between vehicles forces drivers to make complex decisions to avoid vehicle collisions. In most existing studies on model... 详细信息
来源: 评论
Event detection and evolution in multi-lingual social streams
收藏 引用
Frontiers of Computer Science 2020年 第5期14卷 213-227页
作者: Yaopeng Liu Hao Peng Jianxin Li Yangqiu Song Xiong Li Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang UniversityBeijing100083China State Key Laboratory of Software Development Environment Beihang UniversityBeijing100083China Department of Computer Science and Engineering HKUSTHong Kong99907China National Computer Network Emergency Response Technical Team/Coordination Center of China Beijing100029China
Real-life events are emerging and evolving in social and news *** methods have succeeded in capturing designed features of monolingual events,but lack of interpretability and multi-lingual *** this end,we propose a mu... 详细信息
来源: 评论
Self-organization Preserved Graph Structure Learning with Principle of Relevant Information
arXiv
收藏 引用
arXiv 2022年
作者: Sun, Qingyun Li, Jianxin Yang, Beining Fu, Xingcheng Peng, Hao Yu, Philip S. Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China School of Computer Science and Engineering Beihang University Beijing100191 China Department of Computer Science University of Illinois at Chicago Chicago United States
Most Graph Neural Networks follow the message-passing paradigm, assuming the observed structure depicts the ground-truth node relationships. However, this fundamental assumption cannot always be satisfied, as real-wor... 详细信息
来源: 评论
On the Chordality of Simple Decomposition in Top-Down Style  8th
On the Chordality of Simple Decomposition in Top-Down Style
收藏 引用
8th International Conference on Mathematical Aspects of Computer and Information Sciences, MACIS 2019
作者: Mou, Chenqi Lai, Jiahua LMIB–School of Mathematical Sciences Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
Simple decomposition of polynomial sets computes conditionally squarefree triangular sets or systems with certain zero or ideal relationships with the polynomial sets. In this paper we study the chordality of polynomi... 详细信息
来源: 评论
Quantum Graph Convolutional Neural Networks
Quantum Graph Convolutional Neural Networks
收藏 引用
第40届中国控制会议
作者: Jin Zheng Qing Gao Yanxuan Lü School of Automation Science and Electrical Engineering Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
At present, there are a large number of quantum neural network models to deal with Euclidean spatial data, while little research have been conducted on non-Euclidean spatial data. In this paper, we propose a novel qua... 详细信息
来源: 评论
CLDG: Contrastive Learning on Dynamic Graphs
CLDG: Contrastive Learning on Dynamic Graphs
收藏 引用
International Conference on data Engineering
作者: Yiming Xu Bin Shi Teng Ma Bo Dong Haoyi Zhou Qinghua Zheng Department of Computer Science and Technology Xi’an Jiaotong University China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University China Department of Distance Education Xi’an Jiaotong University China School of Software Beihang University China Advanced Innovation Center for Big Data and Brain Computing Beihang University China
The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph c...
来源: 评论