咨询与建议

限定检索结果

文献类型

  • 291 篇 期刊文献
  • 198 篇 会议

馆藏范围

  • 489 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 207 篇 计算机科学与技术...
    • 180 篇 软件工程
    • 57 篇 信息与通信工程
    • 53 篇 控制科学与工程
    • 48 篇 生物工程
    • 43 篇 电子科学与技术(可...
    • 38 篇 机械工程
    • 28 篇 光学工程
    • 26 篇 电气工程
    • 24 篇 生物医学工程(可授...
    • 21 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 13 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 10 篇 动力工程及工程热...
    • 10 篇 建筑学
    • 8 篇 土木工程
  • 230 篇 理学
    • 111 篇 数学
    • 63 篇 物理学
    • 54 篇 生物学
    • 35 篇 统计学(可授理学、...
    • 28 篇 系统科学
    • 20 篇 化学
  • 70 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 31 篇 医学
    • 28 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 17 篇 法学
    • 17 篇 社会学
  • 7 篇 经济学
  • 3 篇 教育学
  • 2 篇 农学
  • 2 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 20 篇 graph neural net...
  • 14 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 9 篇 semantics
  • 9 篇 synchronization
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 forecasting
  • 5 篇 conferences
  • 5 篇 object detection
  • 5 篇 face recognition

机构

  • 214 篇 beijing advanced...
  • 63 篇 beijing advanced...
  • 37 篇 school of comput...
  • 24 篇 school of econom...
  • 20 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 14 篇 peng cheng labor...
  • 10 篇 school of softwa...
  • 9 篇 beihang universi...
  • 8 篇 anhui high relia...
  • 8 篇 school of mathem...
  • 8 篇 school of integr...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 state key labora...
  • 8 篇 department of ne...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...

作者

  • 43 篇 peng hao
  • 42 篇 li jianxin
  • 23 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 15 篇 weisheng zhao
  • 14 篇 fu xingcheng
  • 14 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 yunhong wang
  • 11 篇 jianxin li
  • 11 篇 ji cheng
  • 11 篇 hao peng
  • 11 篇 zhao jichang
  • 11 篇 he lifang

语言

  • 469 篇 英文
  • 11 篇 中文
  • 9 篇 其他
检索条件"机构=Beijing Advanced.Innovation Center for Big Data and Brain Computing"
489 条 记 录,以下是201-210 订阅
排序:
A quantum convolutional neural network for image classification
arXiv
收藏 引用
arXiv 2021年
作者: Lü, Yanxuan Gao, Qing Lü, Jinhu Ogorzalek, MacIej Zheng, Jin School of Automation Science and Electrical Engineering Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Department of Information Technologies Jagiellonian University Kraków30-348 Poland
Artificial neural networks have achieved great success in many fields ranging from image recognition to video understanding. However, its high requirements for computing and memory resources have limited further devel... 详细信息
来源: 评论
Leader-Following Consensus of Stochastic Dynamical Multi-Agent Systems Under PI Control
Leader-Following Consensus of Stochastic Dynamical Multi-Age...
收藏 引用
Annual Conference of Industrial Electronics Society
作者: Haibo Gu Kexin Liu Jinhu Lu Zhang Ren School of Automation Science and Electrical Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
With the development of swarm intelligence in last decades, consensus problem of multi-agent systems has been attracting much attention. To reveal the inherent mechanism of leader-following consensus in multi-agent sy... 详细信息
来源: 评论
Effects of Dynamic-Win-Stay-Lose-Learn model with voluntary participation in social dilemma
arXiv
收藏 引用
arXiv 2021年
作者: Shi, Zhenyu Wei, Wei Feng, Xiangnan Zhang, Ruizhi Zheng, Zhiming School of Mathematical Sciences Beihang University Beijing China Key Laboratory of Mathematics Informatics Behavioral Semantics Ministry of Education China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang China Peng Cheng Laboratory ShenzhenGuangdong China
In recent years, Win-Stay-Lose-Learn rule has attracted wide attention as an effective strategy updating rule, and voluntary participation is proposed by introducing a third strategy in Prisoner's dilemma game. So... 详细信息
来源: 评论
Attend and Select: A Segment Selective Transformer for Microblog Hashtag Generation
arXiv
收藏 引用
arXiv 2021年
作者: Mao, Qianren Li, Xi Liu, Bang Guo, Shu Hao, Peng Li, Jianxin Wang, Lihong Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China The State Key Laboratory of Software Development Environment Beihang University Beijing100191 China RALI Mila University of Montreal United Kingdom CENCERT/CC Beijing210016 China
Hashtag generation aims to generate short and informal topical tags from a microblog post, in which tokens or phrases form the hashtags. These tokens or phrases may originate from primary fragmental textual pieces (e.... 详细信息
来源: 评论
Discriminative features matter: Multi-layer bilinear pooling for camera localization  30
Discriminative features matter: Multi-layer bilinear pooling...
收藏 引用
30th British Machine Vision Conference, BMVC 2019
作者: Wang, Xin Wang, Xiang Wang, Chen Bai, Xiao Wu, Jing Hancock, Edwin Robert School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Jiangxi Research Institute Beihang University Beijing China School of Computer Science and Informatics Cardiff University Cardiff United Kingdom Department of Computer Science University of York York United Kingdom
Deep learning based camera localization from a single image has been explored recently since these methods are computationally efficient. However, existing methods only provide general global representations, from whi... 详细信息
来源: 评论
Adaptive hybrid transaction processing with hardware transaction memory  21
Adaptive hybrid transaction processing with hardware transac...
收藏 引用
21st IEEE International Conference on High Performance computing and Communications, 17th IEEE International Conference on Smart City and 5th IEEE International Conference on data Science and Systems, HPCC/SmartCity/DSS 2019
作者: He, Tao Li, Jianxin Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China SKLSDE Lab Beihang University Beijing China
Many performance-sensitive software systems gain benefit from the availability of advanced hardware features, and many research works have been transited to engineering reality. For instance, restricted hardware trans... 详细信息
来源: 评论
Robust Optimization for Quantum Reinforcement Learning Control using Partial Observations
arXiv
收藏 引用
arXiv 2022年
作者: Jiang, Chen Pan, Yu Wu, Zheng-Guang Gao, Qing Dong, Daoyi State Key Laboratory of Industrial Control Technology Institute of Cyber-Systems and Control College of Control Science and Engineering Zhejiang University Hangzhou310027 China The School of Automation Science and Electrical Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China The School of Engineering and Information Technology University of New South Wales CanberraACT2600 Australia
The current quantum reinforcement learning control models often assume that the quantum states are known a priori for control optimization. However, full observation of quantum state is experimentally infeasible due t... 详细信息
来源: 评论
Generating disentangled arguments with prompts: A simple event extraction framework that works
arXiv
收藏 引用
arXiv 2021年
作者: Si, Jinghui Peng, Xutan Li, Chen Xu, Haotian Li, Jianxin Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China State Key Laboratory of Software Development Environment Beihang University China Alibaba Group China Department of Computer Science The University of Sheffield United Kingdom
Event Extraction bridges the gap between text and event signals. Based on the assumption of trigger-argument dependency, existing approaches have achieved state-of-the-art performance with expert-designed templates or... 详细信息
来源: 评论
A Survey on Deep Learning Event Extraction: Approaches and Applications
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qian Li, Jianxin Sheng, Jiawei Cui, Shiyao Wu, Jia Hei, Yiming Peng, Hao Guo, Shu Wang, Lihong Beheshti, Amin Yu, Philip S. The School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100083 China The Institute of Information Engineering Chinese Academy of Sciences Beijing100083 China The School of Cyber Security University of Chinese Academy of Sciences Beijing100083 China The School of Cyber Science and Technology Beihang University Beijing100083 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100083 China The National Computer Network Emergency Response Technical Team Coordination Center of China Beijing100029 China The School of Computing Macquarie University Sydney Australia The Department of Computer Science University of Illinois at Chicago Chicago60607 United States
Event extraction is a crucial research task for promptly apprehending event information from massive textual data. With the rapid development of deep learning, event extraction based on deep learning technology has be... 详细信息
来源: 评论
Fast Subspace Clustering Based on the Kronecker Product
Fast Subspace Clustering Based on the Kronecker Product
收藏 引用
International Conference on Pattern Recognition
作者: Lei Zhou Xiao Bai Liang Zhang Jun Zhou Edwin Hancock School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Jiangxi Research Institute Beihang University Beijing China School of Information and Communication Technology Griffith University Nathan Australia University of York York U.K.
Subspace clustering is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller than the ambient dimension. Spectral clustering, as one of the... 详细信息
来源: 评论