咨询与建议

限定检索结果

文献类型

  • 330 篇 会议
  • 137 篇 期刊文献

馆藏范围

  • 467 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 442 篇 工学
    • 428 篇 计算机科学与技术...
    • 69 篇 软件工程
    • 44 篇 电气工程
    • 14 篇 信息与通信工程
    • 8 篇 控制科学与工程
    • 8 篇 生物工程
    • 4 篇 机械工程
    • 3 篇 化学工程与技术
    • 2 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 57 篇 理学
    • 37 篇 数学
    • 16 篇 统计学(可授理学、...
    • 10 篇 物理学
    • 10 篇 系统科学
    • 8 篇 生物学
    • 1 篇 化学
    • 1 篇 地理学
    • 1 篇 地球物理学
  • 27 篇 文学
    • 27 篇 外国语言文学
    • 3 篇 中国语言文学
  • 21 篇 管理学
    • 16 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
  • 17 篇 医学
    • 17 篇 临床医学
  • 9 篇 法学
    • 9 篇 社会学
  • 8 篇 教育学
    • 8 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 17 篇 recommender syst...
  • 15 篇 task analysis
  • 14 篇 semantics
  • 14 篇 personalized sea...
  • 12 篇 reinforcement le...
  • 12 篇 knowledge graph
  • 12 篇 sequential recom...
  • 11 篇 computer vision
  • 11 篇 training
  • 9 篇 contrastive lear...
  • 9 篇 graph neural net...
  • 9 篇 diffusion
  • 8 篇 search result di...
  • 8 篇 recommendation s...
  • 7 篇 zero-shot learni...
  • 7 篇 computational li...
  • 7 篇 computational mo...
  • 7 篇 visualization
  • 6 篇 graph neural net...
  • 6 篇 collaborative fi...

机构

  • 264 篇 beijing key lab ...
  • 235 篇 renmin univ chin...
  • 121 篇 renmin univ chin...
  • 50 篇 beijing key labo...
  • 45 篇 gaoling school o...
  • 30 篇 renmin univ chin...
  • 23 篇 renmin univ chin...
  • 22 篇 moe key lab data...
  • 20 篇 renmin univ chin...
  • 16 篇 alibaba grp peop...
  • 16 篇 beijing acad art...
  • 16 篇 renmin univ chin...
  • 12 篇 renmin univ chin...
  • 12 篇 renmin univ chin...
  • 10 篇 chinese acad sci...
  • 10 篇 univ montreal di...
  • 10 篇 beijing inst tec...
  • 9 篇 tsinghua univers...
  • 9 篇 univ chinese aca...
  • 9 篇 tsinghua univ be...

作者

  • 202 篇 wen ji-rong
  • 109 篇 zhao wayne xin
  • 49 篇 dou zhicheng
  • 40 篇 li chongxuan
  • 39 篇 lu zhiwu
  • 38 篇 chen xu
  • 30 篇 zhu jun
  • 28 篇 zhou kun
  • 27 篇 bao fan
  • 26 篇 liu yong
  • 23 篇 xu jun
  • 21 篇 su bing
  • 19 篇 huang wenbing
  • 19 篇 xu hongteng
  • 18 篇 mao jiaxin
  • 17 篇 li junyi
  • 16 篇 wei zhewei
  • 16 篇 cao zhao
  • 15 篇 li yaliang
  • 15 篇 dong zhenhua

语言

  • 461 篇 英文
  • 6 篇 其他
检索条件"机构=Beijing Key Lab of Big Data Management and Analysis Method"
467 条 记 录,以下是1-10 订阅
排序:
ControlVideo: conditional control for one-shot text-driven video editing and beyond
收藏 引用
Science China(Information Sciences) 2025年 第3期68卷 150-162页
作者: Min ZHAO Rongzhen WANG Fan BAO Chongxuan LI Jun ZHU Department of Computer Science and Technology Institute for AI Tsinghua-Bosch Joint ML CenterTsinghua Laboratory of Brain and Intelligence Lab Tsinghua University ShengShu Technology Gaoling School of Artificial Intelligence Renmin University of China Beijing Key Laboratory of Big Data Management and Analysis Methods Pazhou Laboratory (Huangpu)
This paper presents ControlVideo for text-driven video editing — generating a video that aligns with a given text while preserving the structure of the source video. Building on a pre-trained text-to-image diffusion ... 详细信息
来源: 评论
ICLEval: Evaluating In-Context Learning Ability of Large Language Models  31
ICLEval: Evaluating In-Context Learning Ability of Large Lan...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Chen, Wentong Lin, Yankai Zhou, ZhenHao Huang, HongYun Jia, Yantao Cao, Zhao Wen, Ji-Rong Gaoling School of Artificial Intelligence Renmin University of China China Huawei Poisson Lab China Beijing Key Laboratory of Big Data Management and Analysis Methods China School of Information Renmin University of China China
In-Context Learning (ICL) is a critical capability of Large Language Models (LLMs) as it empowers them to comprehend and reason across interconnected inputs. Evaluating the ICL ability of LLMs can enhance their utiliz... 详细信息
来源: 评论
A General Multi-Context Embedding Model for Mining Human Trajectory data
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND data ENGINEERING 2016年 第8期28卷 1945-1958页
作者: Zhou, Ningnan Zhao, Wayne Xin Zhang, Xiao Wen, Ji-Rong Wang, Shan Renmin Univ China Sch Informat Beijing Peoples R China Beijing Key Lab Big Data Management & Anal Method Beijing Peoples R China
The proliferation of location-based social networks, such as Foursquare and Facebook Places, offers a variety of ways to record human mobility, including user generated geo-tagged contents, check-in services, and mobi... 详细信息
来源: 评论
AP-GAN: Adversarial patch attack on content-based image retrieval systems
收藏 引用
GEOINFORMATICA 2022年 第2期26卷 347-377页
作者: Zhao, Guoping Zhang, Mingyu Liu, Jiajun Li, Yaxian Wen, Ji-Rong Renmin Univ China Sch Informat Beijing 100872 Peoples R China Beijing Key Lab Big Data Management & Anal Method Beijing Peoples R China
key Smart City applications such as traffic management and public security rely heavily on the intelligent processing of video and image data, often in the form of visual retrieval tasks, such as person Re-IDentificat... 详细信息
来源: 评论
Accelerating exploitation and integration of global renewable energy
收藏 引用
Innovation 2025年
作者: Wang, Jianxiao Chen, Xinjiang Zhuang, Minghao Li, Yan Ruan, Ziwen Wang, Yuhan Zhang, Ning Song, Jie He, Kebin Lu, Xi National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing100871 China Department of Industrial Engineering and Management College of Engineering Peking University Beijing100871 China Peking University Ordos Research Institute of Energy Ordos017000 China State Key Laboratory of Nutrient Use and Management College of Resources and Environmental Sciences China Agricultural University Beijing100193 China College of Environmental Science and Engineering Tongji University Shanghai200092 China School of Environment State Key Joint Laboratory of Environment Simulation and Pollution Control Tsinghua University Beijing100084 China State Key Lab of Power Systems Department of Electrical Engineering Tsinghua University Beijing100084 China Institute for Carbon Neutrality Tsinghua University Beijing100084 China
来源: 评论
A Gain-Tuning Dynamic Negative Sampler for Recommendation  22
A Gain-Tuning Dynamic Negative Sampler for Recommendation
收藏 引用
31st ACM Web Conference (WWW)
作者: Qiannan Zhu Zhang, Haobo Qing He Dou, Zhicheng Renmin Univ China Beijing Key Lab Big Data Management & Anal Method Gaoling Sch Artificial Intelligence Beijing Peoples R China Renmin Univ China Sch Informat Beijing Key Lab Big Data Management & Anal Method Beijing Peoples R China Renmin Univ China Sch Finance Beijing Key Lab Big Data Management & Anal Method Beijing Peoples R China
Selecting reliable negative training instances is the challenging task in the implicit feedback-based recommendation, which is optimized by pairwise learning on user feedback data. The existing methods usually exploit... 详细信息
来源: 评论
Deep cross-platform product matching in e-commerce
收藏 引用
INFORMATION RETRIEVAL JOURNAL 2020年 第2期23卷 136-158页
作者: Li, Juan Dou, Zhicheng Zhu, Yutao Zuo, Xiaochen Wen, Ji-Rong Renmin Univ China Sch Informat Beijing Peoples R China Beijing Key Lab Big Data Management & Anal Method Beijing Peoples R China
Online shopping has become more and more popular in recent years, which leads to a prosperity on online platforms. Generally, the identical products are provided by many sellers on multiple platforms. Thus the compari... 详细信息
来源: 评论
Curriculum Pre-training Heterogeneous Subgraph Transformer for Top-N Recommendation
收藏 引用
ACM TRANSACTIONS ON INFORMATION SYSTEMS 2023年 第1期41卷 1-28页
作者: Wang, Hui Zhou, Kun Zhao, Xin Wang, Jingyuan Wen, Ji-Rong Renmin Univ China Sch Informat Beijing Key Lab Big Data Management & Anal Method Beijing 100872 Peoples R China Renmin Univ China Beijing Key Lab Big Data Management & Anal Method Gaoling Sch Artificial Intelligence Beijing 100872 Peoples R China Beihang Univ Lab Low Carbon Intelligent Governance Sch Comp Sci & Engn Beijing 100191 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China Renmin Univ China Beijing Key Lab Big Data Management & Anal Method Sch Informat Gaoling Sch Artificial Intelligence Beijing 100872 Peoples R China
To characterize complex and heterogeneous side information in recommender systems, the heterogeneous information network (HIN) has shown superior performance and attracted much research attention. In HIN, the rich ent... 详细信息
来源: 评论
Modeling the Parameter Interactions in Ranking SVM with Low-Rank Approximation
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND data ENGINEERING 2019年 第6期31卷 1181-1193页
作者: Xu, Jun Zeng, Wei Lan, Yanyan Guo, Jiafeng Cheng, Xueqi Renmin Univ China Sch Informat Beijing Key Lab Big Data Management & Anal Method Beijing Peoples R China Chinese Acad Sci Inst Comp Technol CAS Key Lab Network Data Sci & Technol Beijing Peoples R China
Ranking SVM, which formalizes the problem of learning a ranking model as that of learning a binary SVM on preference pairs of documents, is a state-of-the-art ranking model in information retrieval. The dual form solu... 详细信息
来源: 评论
Improving First-stage Retrieval of Point-of-interest Search by Pre-training Models
收藏 引用
ACM TRANSACTIONS ON INFORMATION SYSTEMS 2024年 第3期42卷 1-27页
作者: Mei, Lang Mao, Jiaxin Hu, Juan Tan, Naiqiang Chai, Hua Wen, Ji-Rong Renmin Univ China Beijing Key Lab Big Data Management & Anal Method Gaoling Sch Artificial Intelligence Beijing 100872 Peoples R China Didi Chuxing Beijing Peoples R China
Point-of-interest (POI) search is important for location-based services, such as navigation and online ride-hailing service. The goal of POI search is to find the most relevant destinations from a large-scale POI data... 详细信息
来源: 评论