咨询与建议

限定检索结果

文献类型

  • 317 篇 期刊文献
  • 162 篇 会议

馆藏范围

  • 479 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 361 篇 工学
    • 314 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 59 篇 信息与通信工程
    • 50 篇 生物工程
    • 27 篇 化学工程与技术
    • 25 篇 控制科学与工程
    • 17 篇 光学工程
    • 14 篇 机械工程
    • 12 篇 电气工程
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 9 篇 生物医学工程(可授...
    • 9 篇 网络空间安全
    • 6 篇 动力工程及工程热...
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
  • 190 篇 理学
    • 109 篇 数学
    • 54 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 32 篇 物理学
    • 30 篇 化学
    • 21 篇 系统科学
  • 80 篇 管理学
    • 55 篇 图书情报与档案管...
    • 31 篇 管理科学与工程(可...
  • 24 篇 法学
    • 24 篇 社会学
  • 7 篇 教育学
    • 7 篇 教育学
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 6 篇 外国语言文学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 医学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 21 篇 semantics
  • 17 篇 recommender syst...
  • 17 篇 computational li...
  • 14 篇 machine learning
  • 12 篇 graph neural net...
  • 10 篇 knowledge graph
  • 10 篇 diffusion
  • 9 篇 reinforcement le...
  • 9 篇 distillation
  • 9 篇 benchmarking
  • 9 篇 forecasting
  • 6 篇 generative adver...
  • 6 篇 search engines
  • 5 篇 contrastive lear...
  • 5 篇 tensors
  • 4 篇 surveys
  • 4 篇 object detection
  • 4 篇 user profile
  • 4 篇 deep learning
  • 4 篇 large dataset

机构

  • 336 篇 beijing key labo...
  • 315 篇 gaoling school o...
  • 104 篇 school of inform...
  • 24 篇 tsinghua univers...
  • 23 篇 beijing academy ...
  • 20 篇 beijing key labo...
  • 20 篇 gaoling school o...
  • 17 篇 beijing key labo...
  • 17 篇 gaoling school o...
  • 15 篇 gaoling school o...
  • 14 篇 diro université ...
  • 14 篇 alibaba group
  • 12 篇 dept. of comp. s...
  • 11 篇 department of co...
  • 10 篇 university of ch...
  • 9 篇 nlp group dcst i...
  • 9 篇 dept. of comp. s...
  • 9 篇 key laboratory o...
  • 9 篇 quan cheng labor...
  • 8 篇 school of softwa...

作者

  • 158 篇 wen ji-rong
  • 104 篇 zhao wayne xin
  • 46 篇 li chongxuan
  • 40 篇 lu zhiwu
  • 34 篇 zhou kun
  • 31 篇 huang wenbing
  • 30 篇 su bing
  • 28 篇 zhu jun
  • 26 篇 chen xu
  • 25 篇 xu hongteng
  • 25 篇 lin yankai
  • 22 篇 liu yang
  • 20 篇 bao fan
  • 20 篇 li junyi
  • 19 篇 ji-rong wen
  • 18 篇 tang tianyi
  • 17 篇 dou zhicheng
  • 16 篇 liu yong
  • 15 篇 zhou jie
  • 15 篇 yong liu

语言

  • 443 篇 英文
  • 33 篇 其他
  • 3 篇 中文
检索条件"机构=Beijing Key Laboratory of Big-Data Management and Analysis Methods"
479 条 记 录,以下是21-30 订阅
排序:
Learning Structure-enhanced Temporal Point Processes with Gromov-Wasserstein Regularization
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Qingmei Wang, Fanmeng Su, Bing Xu, Hongteng Gaoling School of Artificial Intelligence Renmin University of China China Gaoling School of Artificial Intelligence Beijing Key Laboratory of Big Data Management and Analysis Methods Renmin University of China China
Real-world event sequences are often generated by different temporal point processes (TPPs) and thus have clustering structures. Nonetheless, in the modeling and prediction of event sequences, most existing TPPs ignor... 详细信息
来源: 评论
Accelerating exploitation and integration of global renewable energy
收藏 引用
Innovation 2025年
作者: Wang, Jianxiao Chen, Xinjiang Zhuang, Minghao Li, Yan Ruan, Ziwen Wang, Yuhan Zhang, Ning Song, Jie He, Kebin Lu, Xi National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing100871 China Department of Industrial Engineering and Management College of Engineering Peking University Beijing100871 China Peking University Ordos Research Institute of Energy Ordos017000 China State Key Laboratory of Nutrient Use and Management College of Resources and Environmental Sciences China Agricultural University Beijing100193 China College of Environmental Science and Engineering Tongji University Shanghai200092 China School of Environment State Key Joint Laboratory of Environment Simulation and Pollution Control Tsinghua University Beijing100084 China State Key Lab of Power Systems Department of Electrical Engineering Tsinghua University Beijing100084 China Institute for Carbon Neutrality Tsinghua University Beijing100084 China
来源: 评论
Generating timeline summaries with social media attention
收藏 引用
Frontiers of Computer Science 2016年 第4期10卷 702-716页
作者: Wayne Xin ZHAO Ji-Rong WEN Xiaoming LI School of Information Renmin University of China Beijing 100872 China Beijing Key Laboratory of Big Data Management and Analysis Methods Renmin University of China Beijing 100872 China School of Electronics Engineering and Computer Science Peking University Beijing 100871 China Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data Beijing 100144 China
Timeline generation is an important research task which can help users to have a quick understanding of the overall evolution of one given topic. Previous methods simply split the time span into fixed, equal time inte... 详细信息
来源: 评论
Ranking and tagging bursty features in text streams with context language models
收藏 引用
Frontiers of Computer Science 2017年 第5期11卷 852-862页
作者: Wayne Xin ZHAO Chen LIU Ji-Rong WEN Xiaoming LI School of Information Renmin University of China Beijing 100872 China Beijing Key Laboratory of Big Data Management and Analysis Methods Renmin University of China Beijing 100872 China Beijing Key Laboratory on Integration and Analysis of Large-scale Stream Data Beijing 100144 China School of Electronics Engineering and Computer Science Peking University Beijing 100871 China
Detecting and using bursty pattems to analyze text streams has been one of the fundamental approaches in many temporal text mining applications. So far, most existing studies have focused on developing methods to dete... 详细信息
来源: 评论
Large scale sparse clustering  25
Large scale sparse clustering
收藏 引用
25th International Joint Conference on Artificial Intelligence, IJCAI 2016
作者: Ruqi, Zhang Lu, Zhiwu Beijing Key Laboratory of Big Data Management and Analysis Methods School of Information Renmin University of China Beijing100872 China
Large-scale clustering has found wide applications in many fields and received much attention in recent years. However, most existing large-scale clustering methods can only achieve mediocre performance, because they ... 详细信息
来源: 评论
InsightGAN: Semi-supervised feature learning with generative adversarial network for drug abuse detection  25th
InsightGAN: Semi-supervised feature learning with generative...
收藏 引用
25th International Conference on Neural Information Processing, ICONIP 2018
作者: Liu, Guangzhen Hu, Jun Zhao, An Ding, Mingyu Huo, Yuqi Lu, Zhiwu Beijing Key Laboratory of Big Data Management and Analysis Methods School of Information Renmin University of China Beijing100872 China
We present a novel generative adversarial network (GAN) model, called InsightGAN, for drug abuse detection. Our model is inspired by two closely related works on machine learning for healthcare applications: (1) drug ... 详细信息
来源: 评论
Zero-shot learning with superclasses  25th
Zero-shot learning with superclasses
收藏 引用
25th International Conference on Neural Information Processing, ICONIP 2018
作者: Huo, Yuqi Ding, Mingyu Zhao, An Hu, Jun Wen, Ji-Rong Lu, Zhiwu Beijing Key Laboratory of Big Data Management and Analysis Methods School of Information Renmin University of China Beijing100872 China
Zero-shot learning (ZSL) can be regarded as transfer learning from seen classes to unseen ones so that the later can be recognized without any training samples. Its main difficulty lies in that there often exists a la... 详细信息
来源: 评论
Crowd-Guided Entity Matching with Consolidated Textual data
收藏 引用
Journal of Computer Science & Technology 2017年 第5期32卷 858-876页
作者: Zhi-Xu Li Qiang Yang An Liu Guan-Feng Liu Jia Zhu Jia-Jie Xu Kai Zheng Min Zhang School of Computer Science and Technology Soochow University Suzhou 215006 China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou 510006 China School of Computer Science and Technology Soochow University Suzhou 215006 China School of Computer South China Normal University Guangzhou 510631 China School of Computer Science and Technology Soochow University Suzhou 215006 China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing 100872 China
Entity matching (EM) identifies records referring to the same entity within or across databases. Existing methods using structured attribute values (such as digital, date or short string values) may fail when the stru... 详细信息
来源: 评论
SRAP-Agent: Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent
SRAP-Agent: Simulating and Optimizing Scarce Resource Alloca...
收藏 引用
2024 Conference on Empirical methods in Natural Language Processing, EMNLP 2024
作者: Ji, Jiarui Li, Yang Liu, Hongtao Du, Zhicheng Wei, Zhewei Shen, Weiran Qi, Qi Lin, Yankai Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Public scarce resource allocation plays a crucial role in economics as it directly influences the efficiency and equity in society. Traditional studies including theoretical model-based, empirical study-based and simu... 详细信息
来源: 评论
MMPareto: Boosting Multimodal Learning with Innocent Unimodal Assistance  41
MMPareto: Boosting Multimodal Learning with Innocent Unimoda...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Wei, Yake Hu, Di Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Multimodal learning methods with targeted unimodal learning objectives have exhibited their superior efficacy in alleviating the imbalanced multimodal learning problem. However, in this paper, we identify the previous... 详细信息
来源: 评论