咨询与建议

限定检索结果

文献类型

  • 317 篇 期刊文献
  • 162 篇 会议

馆藏范围

  • 479 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 361 篇 工学
    • 314 篇 计算机科学与技术...
    • 266 篇 软件工程
    • 59 篇 信息与通信工程
    • 50 篇 生物工程
    • 27 篇 化学工程与技术
    • 25 篇 控制科学与工程
    • 17 篇 光学工程
    • 14 篇 机械工程
    • 12 篇 电气工程
    • 9 篇 建筑学
    • 9 篇 土木工程
    • 9 篇 生物医学工程(可授...
    • 9 篇 网络空间安全
    • 6 篇 动力工程及工程热...
    • 6 篇 电子科学与技术(可...
    • 6 篇 安全科学与工程
    • 5 篇 材料科学与工程(可...
  • 190 篇 理学
    • 109 篇 数学
    • 54 篇 生物学
    • 39 篇 统计学(可授理学、...
    • 32 篇 物理学
    • 30 篇 化学
    • 21 篇 系统科学
  • 80 篇 管理学
    • 55 篇 图书情报与档案管...
    • 31 篇 管理科学与工程(可...
  • 24 篇 法学
    • 24 篇 社会学
  • 7 篇 教育学
    • 7 篇 教育学
  • 7 篇 文学
    • 6 篇 中国语言文学
    • 6 篇 外国语言文学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 医学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 21 篇 semantics
  • 17 篇 recommender syst...
  • 17 篇 computational li...
  • 14 篇 machine learning
  • 12 篇 graph neural net...
  • 10 篇 knowledge graph
  • 10 篇 diffusion
  • 9 篇 reinforcement le...
  • 9 篇 distillation
  • 9 篇 benchmarking
  • 9 篇 forecasting
  • 6 篇 generative adver...
  • 6 篇 search engines
  • 5 篇 contrastive lear...
  • 5 篇 tensors
  • 4 篇 surveys
  • 4 篇 object detection
  • 4 篇 user profile
  • 4 篇 deep learning
  • 4 篇 large dataset

机构

  • 336 篇 beijing key labo...
  • 315 篇 gaoling school o...
  • 104 篇 school of inform...
  • 24 篇 tsinghua univers...
  • 23 篇 beijing academy ...
  • 20 篇 beijing key labo...
  • 20 篇 gaoling school o...
  • 17 篇 beijing key labo...
  • 17 篇 gaoling school o...
  • 15 篇 gaoling school o...
  • 14 篇 diro université ...
  • 14 篇 alibaba group
  • 12 篇 dept. of comp. s...
  • 11 篇 department of co...
  • 10 篇 university of ch...
  • 9 篇 nlp group dcst i...
  • 9 篇 dept. of comp. s...
  • 9 篇 key laboratory o...
  • 9 篇 quan cheng labor...
  • 8 篇 school of softwa...

作者

  • 158 篇 wen ji-rong
  • 104 篇 zhao wayne xin
  • 46 篇 li chongxuan
  • 40 篇 lu zhiwu
  • 34 篇 zhou kun
  • 31 篇 huang wenbing
  • 30 篇 su bing
  • 28 篇 zhu jun
  • 26 篇 chen xu
  • 25 篇 xu hongteng
  • 25 篇 lin yankai
  • 22 篇 liu yang
  • 20 篇 bao fan
  • 20 篇 li junyi
  • 19 篇 ji-rong wen
  • 18 篇 tang tianyi
  • 17 篇 dou zhicheng
  • 16 篇 liu yong
  • 15 篇 zhou jie
  • 15 篇 yong liu

语言

  • 443 篇 英文
  • 33 篇 其他
  • 3 篇 中文
检索条件"机构=Beijing Key Laboratory of Big-Data Management and Analysis Methods"
479 条 记 录,以下是31-40 订阅
排序:
High Probability analysis for Non-Convex Stochastic Optimization with Clipping  26
High Probability Analysis for Non-Convex Stochastic Optimiza...
收藏 引用
26th European Conference on Artificial Intelligence, ECAI 2023
作者: Li, Shaojie Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Gradient clipping is a commonly used technique to stabilize the training process of neural networks. A growing body of studies has shown that gradient clipping is a promising technique for dealing with the heavy-taile... 详细信息
来源: 评论
TEMPORAL ALIGNMENT PREDICTION FOR SUPERVISED REPRESENTATION LEARNING AND FEW-SHOT SEQUENCE CLASSIFICATION  10
TEMPORAL ALIGNMENT PREDICTION FOR SUPERVISED REPRESENTATION ...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Su, Bing Wen, Ji-Rong Beijing Key Laboratory of Big Data Management and Analysis Methods Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China
Explainable distances for sequence data depend on temporal alignment to tackle sequences with different lengths and local variances. Most sequence alignment methods infer the optimal alignment by solving an optimizati... 详细信息
来源: 评论
Perfect Alignment May be Poisonous to Graph Contrastive Learning  41
Perfect Alignment May be Poisonous to Graph Contrastive Lear...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Liu, Jingyu Tang, Huayi Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Graph Contrastive Learning (GCL) aims to learn node representations by aligning positive pairs and separating negative ones. However, few of researchers have focused on the inner law behind specific augmentations used... 详细信息
来源: 评论
GENERALIZATION BOUNDS FOR FEDERATED LEARNING: FAST RATES, UNPARTICIPATING CLIENTS AND UNBOUNDED LOSSES  11
GENERALIZATION BOUNDS FOR FEDERATED LEARNING: FAST RATES, UN...
收藏 引用
11th International Conference on Learning Representations, ICLR 2023
作者: Hu, Xiaolin Li, Shaojie Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
In federated learning, the underlying data distributions may be different across clients. This paper provides a theoretical analysis of generalization error of federated learning, which captures both heterogeneity and... 详细信息
来源: 评论
Concentration Inequalities for General Functions of Heavy-Tailed Random Variables  41
Concentration Inequalities for General Functions of Heavy-Ta...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Li, Shaojie Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Concentration inequalities play an essential role in the study of machine learning and high dimensional statistics. In this paper, we obtain unbounded analogues of the popular bounded difference inequality for functio... 详细信息
来源: 评论
Robust Recommendation with Adversarial Gaussian data Augmentation  23
Robust Recommendation with Adversarial Gaussian Data Augment...
收藏 引用
2023 World Wide Web Conference, WWW 2023
作者: Wang, Zhenlei Chen, Xu Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Gaoling School of Artifcial Intelligence Renmin University of China Beijing China
Recommender system holds the promise of accurately understanding and estimating the user preferences. However, due to the extremely sparse user-item interactions, the learned recommender models can be less robust and ... 详细信息
来源: 评论
Algorithmic Stability Unleashed: Generalization Bounds with Unbounded Losses  41
Algorithmic Stability Unleashed: Generalization Bounds with ...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Li, Shaojie Zhu, Bowei Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
One of the central problems of statistical learning theory is quantifying the generalization ability of learning algorithms within a probabilistic framework. Algorithmic stability is a powerful tool for deriving gener...
来源: 评论
DeepInsight: Multi-task multi-scale deep learning for mental disorder diagnosis  29
DeepInsight: Multi-task multi-scale deep learning for mental...
收藏 引用
29th British Machine Vision Conference, BMVC 2018
作者: Ding, Mingyu Huo, Yuqi Hu, Jun Lu, Zhiwu School of Information Renmin University of China Beijing100872 China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing100872 China
We propose a novel deep learning approach, called DeepInsight, to quick diagnosis of autism spectrum disorder (ASD) and major depressive disorder (MDD). Our approach is motivated by recent advances in artificial intel... 详细信息
来源: 评论
Towards Effective Ancient Chinese Translation: dataset, Model, and Evaluation  12th
Towards Effective Ancient Chinese Translation: Dataset, Mode...
收藏 引用
12th National CCF Conference on Natural Language Processing and Chinese Computing, NLPCC 2023
作者: Guo, Geyang Yang, Jiarong Lu, Fengyuan Qin, Jiaxin Tang, Tianyi Zhao, Wayne Xin Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Interpreting ancient Chinese has been the key to comprehending vast Chinese literature, tradition, and civilization. In this paper, we propose Erya for ancient Chinese translation. From a dataset perspective, we colle... 详细信息
来源: 评论
HIGH PROBABILITY GENERALIZATION BOUNDS WITH FAST RATES FOR MINIMAX PROBLEMS  10
HIGH PROBABILITY GENERALIZATION BOUNDS WITH FAST RATES FOR M...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Li, Shaojie Liu, Yong Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China
Minimax problems are receiving an increasing amount of attention in a wide range of applications in machine learning (ML), for instance, reinforcement learning, robust optimization, adversarial learning, and distribut... 详细信息
来源: 评论