咨询与建议

限定检索结果

文献类型

  • 839 篇 会议
  • 527 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 1,369 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 924 篇 工学
    • 513 篇 计算机科学与技术...
    • 478 篇 软件工程
    • 263 篇 控制科学与工程
    • 161 篇 信息与通信工程
    • 147 篇 机械工程
    • 114 篇 生物工程
    • 78 篇 环境科学与工程(可...
    • 77 篇 仪器科学与技术
    • 77 篇 电气工程
    • 70 篇 电子科学与技术(可...
    • 66 篇 生物医学工程(可授...
    • 65 篇 光学工程
    • 52 篇 化学工程与技术
    • 46 篇 交通运输工程
    • 35 篇 动力工程及工程热...
    • 32 篇 安全科学与工程
    • 30 篇 土木工程
    • 28 篇 材料科学与工程(可...
  • 491 篇 理学
    • 250 篇 数学
    • 135 篇 生物学
    • 105 篇 物理学
    • 62 篇 统计学(可授理学、...
    • 60 篇 系统科学
    • 45 篇 化学
    • 26 篇 大气科学
  • 254 篇 管理学
    • 172 篇 管理科学与工程(可...
    • 92 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 43 篇 医学
    • 37 篇 临床医学
    • 24 篇 基础医学(可授医学...
  • 25 篇 农学
  • 17 篇 法学
  • 10 篇 经济学
  • 6 篇 教育学
  • 6 篇 军事学
  • 3 篇 文学
  • 2 篇 艺术学

主题

  • 49 篇 feature extracti...
  • 35 篇 neural networks
  • 33 篇 training
  • 30 篇 deep learning
  • 28 篇 semantics
  • 25 篇 predictive model...
  • 24 篇 computational mo...
  • 22 篇 mathematical mod...
  • 20 篇 visualization
  • 19 篇 optimization
  • 19 篇 optimal control
  • 17 篇 object detection
  • 15 篇 convolution
  • 15 篇 robots
  • 14 篇 task analysis
  • 14 篇 automation
  • 14 篇 adaptive dynamic...
  • 14 篇 mobile robots
  • 14 篇 accuracy
  • 14 篇 forecasting

机构

  • 300 篇 faculty of infor...
  • 257 篇 beijing key labo...
  • 100 篇 beijing key labo...
  • 68 篇 university of ch...
  • 59 篇 engineering rese...
  • 35 篇 beijing laborato...
  • 31 篇 school of artifi...
  • 28 篇 beijing universi...
  • 27 篇 beijing laborato...
  • 26 篇 complex system a...
  • 23 篇 beijing laborato...
  • 22 篇 college of elect...
  • 22 篇 school of artifi...
  • 21 篇 beijing institut...
  • 21 篇 beijing universi...
  • 19 篇 beijing key labo...
  • 17 篇 beijing artifici...
  • 17 篇 engineering rese...
  • 17 篇 beijing key labo...
  • 16 篇 engineering rese...

作者

  • 70 篇 junfei qiao
  • 48 篇 xiaoli li
  • 42 篇 qiao junfei
  • 35 篇 kang wang
  • 33 篇 ding wang
  • 31 篇 jia kebin
  • 30 篇 honggui han
  • 29 篇 han honggui
  • 27 篇 jian tang
  • 21 篇 naigong yu
  • 21 篇 cui zhihua
  • 21 篇 kebin jia
  • 21 篇 feng jinchao
  • 20 篇 xiaogang ruan
  • 20 篇 liu pengyu
  • 20 篇 yang li
  • 19 篇 wu xinyu
  • 18 篇 pengyu liu
  • 18 篇 xuejin gao
  • 18 篇 songmin jia

语言

  • 1,134 篇 英文
  • 204 篇 其他
  • 37 篇 中文
检索条件"机构=Beijing Key Laboratory of Computational Intelligence and Intelligence System"
1369 条 记 录,以下是1-10 订阅
排序:
Online Fault-Tolerant Tracking Control With Adaptive Critic for Nonaffine Nonlinear systems
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2025年 第1期12卷 215-227页
作者: Ding Wang Lingzhi Hu Xiaoli Li Junfei Qiao IEEE the School of Information Science and Technology Beijing Key Laboratory of Computational Intelligence and Intelligent SystemBeijing Laboratory of Smart Environmental Protection and Beijing Institute of Artificial Intelligence Beijing University of Technology
In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator ***, a novel augmented plant is constructed... 详细信息
来源: 评论
Learning Class-Aware Local Representations for Few-Shot Remote Sensing Scene Classification
收藏 引用
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2025年 18卷 13225-13237页
作者: Wang, Liu Zhuo, Li Zhang, Hui Li, Jiafeng Beijing University of Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing100124 China
Few-Shot Remote Sensing Scene Classification (FSRSSC) aims at recognizing novel categories with only a few labeled samples. Local representations can retain richer details than image-level feature vectors and adapt we... 详细信息
来源: 评论
Fractal autoencoder with redundancy regularization for unsupervised feature selection
收藏 引用
Science China(Information Sciences) 2025年 第2期68卷 89-102页
作者: Meiting SUN Fangyu LI Honggui HAN School of Information Science and Technology Beijing University of Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System Engineering Research Center of Digital Community Ministry of Education Beijing Institute of Artificial Intelligence
Feature selection is a crucial step in data preprocessing because feature selection reduces the dimensionality of data by eliminating irrelevant and redundant features. Since manual labeling is expensive, unsupervised... 详细信息
来源: 评论
A hybrid attention model based on first-order statistical features for smoke recognition
收藏 引用
Science China(Technological Sciences) 2024年 第3期67卷 809-822页
作者: GUO Nan LIU JiaHui DI KeXin GU Ke QIAO JunFei Beijing Laboratory of Smart Environmental Protection Beijing Key Laboratory of Computational Intelligence and Intelligent SystemBeijing Artificial Intelligence InstituteBeijing 100124China Faculty of Information Technology Beijing University of TechnologyBeijing 100124China
Smoke and fire recognition are of great importance on foreseeing fire disasters and preventing environmental pollution by monitoring the burning process of objects(e.g., straw, fuels). However, since fire images suffe... 详细信息
来源: 评论
Prototype Enhancement-Based Incremental Evolution Learning for Urban Garbage Classification
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial intelligence 2024年 第1期5卷 398-411页
作者: Han, Honggui Fan, Xiaoye Li, Fangyu Beijing University of Technology Faculty of Information Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing Institute of Artificial Intelligence Beijing100124 China
Deep neural network (DNN) based on incremental learning provides support for efficient garbage classification tasks. However, it is always challenging to accurately learn and preserve the information of known classes ... 详细信息
来源: 评论
Hierarchical Learning-Based Integrated Robust Optimal Control for Nonlinear systems
收藏 引用
IEEE Transactions on systems, Man, and Cybernetics: systems 2025年 第5期55卷 3119-3129页
作者: Zhang, Jiacheng Wang, Jingjing Han, Honggui Hou, Ying Huang, Yanting Beijing University of Technology Faculty of Information Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing100124 China
The optimal control of nonlinear systems is crucial to improve system performance. However, the uncertainties of cost functions and systems dynamics make it difficult to solve the optimal control laws. To cope with th... 详细信息
来源: 评论
A second-order knowledge filter transfer learning algorithm for modeling nonlinear systems
收藏 引用
Science China Technological Sciences 2025年 第6期68卷 105-120页
作者: Honggui HAN Mengmeng LI Xiaolong WU Hongyan YANG Junfei QIAO School of Information Science and Technology Beijing University of Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System Engineering Research Center of Digital Community Ministry of Education
Transfer learning algorithms can transform prior knowledge into linearization knowledge to model nonlinear systems. However, the linearization knowledge-based models tend to diverge in the process of knowledge lineari... 详细信息
来源: 评论
Adaptive Multi-Step Evaluation Design With Stability Guarantee for Discrete-Time Optimal Learning Control
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第9期10卷 1797-1809页
作者: Ding Wang Jiangyu Wang Mingming Zhao Peng Xin Junfei Qiao IEEE Faculty of Information Technology the Beijing Key Laboratory of Computational Intelligence and Intelligent Systemthe Beijing Laboratory of Smart Environmental Protectionand the Beijing Institute of Artificial IntelligenceBeijing University of TechnologyBeijing 100124China
This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control *** is shown that,initialized by the zero cost function,MsHDP can converge to the op... 详细信息
来源: 评论
Fuzzy Neural Network-Based Adaptive Asymmetric Constraint Control in Wastewater Treatment Process
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial intelligence 2024年 第6期5卷 3284-3296页
作者: Chen, Dingyuan Yang, Cuili Qiao, Junfei Beijing University of Technology Faculty of Information Technology Beijing Laboratory for Intelligent Environmental Protection Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing Institute of Artificial Intelligence Beijing100124 China
Wastewater treatment process (WWTP) is an important mean to prevent water pollution and improve ecological environment. Dissolved oxygen (DO) and nitrate nitrogen (NO3-N) concentrations are the main indicators to affe... 详细信息
来源: 评论
Online Aware Synapse Weighted Autoencoder for Recovering Random Missing Data in Wastewater Treatment Process
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial intelligence 2024年 第2期5卷 578-589页
作者: Han, Honggui Sun, Meiting Li, Fangyu Faculty of Information Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System Engineering Research Center of Digital Community Ministry of Education Beijing University of Technology Beijing100124 China Faculty of Information Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing University of Technology Beijing100124 China
Missing values in wastewater treatment process (WWTP) data hinder the monitoring and prediction of operational status. Therefore, various online imputation methods have been proposed to recover missing values from str... 详细信息
来源: 评论