咨询与建议

限定检索结果

文献类型

  • 718 篇 会议
  • 387 篇 期刊文献
  • 4 册 图书

馆藏范围

  • 1,109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 753 篇 工学
    • 443 篇 计算机科学与技术...
    • 422 篇 软件工程
    • 222 篇 控制科学与工程
    • 127 篇 信息与通信工程
    • 116 篇 机械工程
    • 105 篇 生物工程
    • 73 篇 环境科学与工程(可...
    • 67 篇 生物医学工程(可授...
    • 57 篇 光学工程
    • 56 篇 电气工程
    • 49 篇 化学工程与技术
    • 48 篇 仪器科学与技术
    • 41 篇 电子科学与技术(可...
    • 34 篇 交通运输工程
    • 28 篇 材料科学与工程(可...
    • 26 篇 安全科学与工程
    • 24 篇 动力工程及工程热...
    • 19 篇 土木工程
  • 372 篇 理学
    • 177 篇 数学
    • 109 篇 生物学
    • 79 篇 物理学
    • 52 篇 系统科学
    • 49 篇 统计学(可授理学、...
    • 40 篇 化学
    • 19 篇 大气科学
  • 216 篇 管理学
    • 159 篇 管理科学与工程(可...
    • 60 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 37 篇 医学
    • 30 篇 临床医学
    • 24 篇 基础医学(可授医学...
  • 15 篇 法学
  • 13 篇 经济学
  • 9 篇 农学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 47 篇 feature extracti...
  • 33 篇 training
  • 29 篇 deep learning
  • 28 篇 predictive model...
  • 26 篇 neural networks
  • 25 篇 semantics
  • 24 篇 visualization
  • 20 篇 reinforcement le...
  • 19 篇 convolution
  • 16 篇 three-dimensiona...
  • 16 篇 mathematical mod...
  • 15 篇 object detection
  • 15 篇 forecasting
  • 14 篇 adaptive dynamic...
  • 14 篇 robots
  • 14 篇 optimal control
  • 14 篇 adaptation model...
  • 14 篇 wastewater treat...
  • 13 篇 computational mo...
  • 13 篇 convolutional ne...

机构

  • 283 篇 faculty of infor...
  • 258 篇 beijing key labo...
  • 101 篇 beijing key labo...
  • 81 篇 university of ch...
  • 52 篇 school of artifi...
  • 52 篇 engineering rese...
  • 34 篇 beijing laborato...
  • 30 篇 beijing universi...
  • 27 篇 beijing key labo...
  • 26 篇 guangdong engine...
  • 23 篇 beijing laborato...
  • 22 篇 college of elect...
  • 21 篇 beijing laborato...
  • 21 篇 beijing institut...
  • 19 篇 key laboratory o...
  • 19 篇 beijing key labo...
  • 18 篇 shenzhen institu...
  • 17 篇 engineering rese...
  • 17 篇 beijing engineer...
  • 17 篇 beijing universi...

作者

  • 58 篇 junfei qiao
  • 48 篇 xiaoli li
  • 37 篇 qiao junfei
  • 35 篇 kang wang
  • 33 篇 gang xiong
  • 32 篇 ding wang
  • 30 篇 jia kebin
  • 28 篇 honggui han
  • 28 篇 han honggui
  • 27 篇 jian tang
  • 23 篇 zuo guoyu
  • 22 篇 zhen shen
  • 21 篇 xiong gang
  • 21 篇 kebin jia
  • 21 篇 yang li
  • 21 篇 feng jinchao
  • 20 篇 xiaogang ruan
  • 20 篇 guoyu zuo
  • 19 篇 wu xinyu
  • 19 篇 songmin jia

语言

  • 977 篇 英文
  • 115 篇 其他
  • 24 篇 中文
检索条件"机构=Beijing Key Laboratory of Computing Intelligence and Intelligent System"
1109 条 记 录,以下是981-990 订阅
排序:
Prediction of effluent total phosphorus using PLSR-based adaptive deep belief network
收藏 引用
Huagong Xuebao/CIESC Journal 2017年 第5期68卷 1987-1997页
作者: Wang, Gongming Li, Wenjing Qiao, Junfei Faculty of Information Technology Beijing University of Technology Beijing100124 China Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing100124 China
Considered high nonlinearity and large transient variation, a PLSR-adaptive deep belief network (PLSR-ADBN) was proposed for prediction of total phosphorus (TP) in effluent of wastewater treatment process (WWTP). The ... 详细信息
来源: 评论
Knowledge-based intelligent Optimal Control for Wastewater Biochemical Treatment Process
收藏 引用
Zidonghua Xuebao/Acta Automatica Sinica 2017年 第6期43卷 1038-1046页
作者: Qiao, Jun-Fei Han, Gai-Tang Zhou, Hong-Biao Faculty of Information Technology Beijing University of Technology Beijing100124 China Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing100124 China
In order to solve the problems of excessive energy consumption and serious water quality in wastewater treatment process, a wastewater treatment process intelligent optimization control method based on knowledge is pr... 详细信息
来源: 评论
Multiple Demonstration of Trajectory Imitation Learning Based on Multi Constrained Optimization Method
Multiple Demonstration of Trajectory Imitation Learning Base...
收藏 引用
IEEE International Conference on Cyber Technology in Automation, Control, and intelligent systems
作者: Jianjun Yu Yijia Zheng Xiaogang Ruan Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing University of Technology Beijing China
On the basis of trajectory imitation learning, aiming at the problem of the poor learning effect caused by the fluctuations of the single demonstration data, this paper presents a kind of imitation learning method bas... 详细信息
来源: 评论
New Big Data Collecting Method Based on Compressive Sensing in WSN
New Big Data Collecting Method Based on Compressive Sensing ...
收藏 引用
International Conference on Computer Communications and Networks (ICCCN)
作者: De-gan Zhang Xiao-hua Liu Yu-ya Cui Hong-tao Peng School of Computer Science &Engineering Tianjin University of Technology Tianjin China Computing & Novel software Technology Tianjin Key Lab of Intelligent Tianjin China Ministry of Education Key Laboratory of Computer Vision and System(TJUT) Tianjin China National Petroleum Corporation (CNPC) Managers Training Institute Beijing China
Considered the wireless sensor network clustering structure, a new big data collecting method based on compressive sensing is proposed. The collection process is as follows: in the cluster, the sink node sets the corr... 详细信息
来源: 评论
Self-triggered control of heterogeneous multiagent systems with input saturation
Self-triggered control of heterogeneous multiagent systems w...
收藏 引用
Chinese Control Conference (CCC)
作者: Shengli Du Di Wu Yongfeng Gao Xu Li Faculty of Information Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing P. R. China School of Control Science and Engineering Dalian University of Technology Dalian P. R. China School of Aeronautics and Astronautics Dalian University of Technology Dalian P. R. China
This paper is concerned with the semi-global output synchronization problem of a heterogeneous network under self-triggered control. A distributed self-triggered control scheme in which only local information is used ... 详细信息
来源: 评论
Compression of Conditional Deep Learning Network for Fast and Low Power Mobile Applications
Compression of Conditional Deep Learning Network for Fast an...
收藏 引用
2017 the 2nd International Conference on Mechatronics Engineering and Information Technology(ICMEIT 2017)
作者: Lijie Li Yan Zhang Pengfei Wang Faculty of Information Technology Beijing University of Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing University of Technology
CDLN(Conditional Deep Learning Network)is a structure of convolution neural network with multiple *** could improve the speed for the task of classification while the module of the network is still too large for mobil... 详细信息
来源: 评论
Prediction of effluent total phosphorus based on self-organizing fuzzy neural network
收藏 引用
Kongzhi Lilun Yu Yingyong/Control Theory and Applications 2017年 第2期34卷 224-232页
作者: Qiao, Jun-Fei Zhou, Hong-Biao Faculty of Information Technology Beijing University of Technology Beijing100124 China Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing100124 China Faculty of Automation Huaiyin Institute of Technology Huai'anJiangsu223003 China
A novel online self-organizing fuzzy neural network (FNN) based on the improved Levenberg-Marquardt (ILM) learning algorithm and singular value decomposition (SVD) is proposed to predict the effluent total phosphorus ... 详细信息
来源: 评论
BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2023年 第6期20卷 824-835页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is r...
来源: 评论
Semantic Segmentation Based on Deep Convolution Neural Network
收藏 引用
Journal of Physics: Conference Series 2018年 第1期1069卷
作者: Jichao Shan Xiuzhi Li Songmin Jia Xiangyin Zhang Faculty of Information Technology Beijing University of Technology Beijing 100124 China Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing 100124 China.
Semantic segmentation using full convolutional neural network (FCN) avoids the problems of repeated calculation and storage due to using of pixel blocks. However, the results obtained by FCN are still not precise enou...
来源: 评论
An Improved Levenberg-Marquardt Algorithm with Adaptive Learning Rate for RBF Neural Network  35
An Improved Levenberg-Marquardt Algorithm with Adaptive Lear...
收藏 引用
第35届中国控制会议
作者: AN Ru LI Wen Jing Han Hong Gui QIAO Jun Fei College of Electronic and Control Engineering Beijing University of Technology Beijing Key Laboratory of Computational Intelligence and Intelligent System
In this paper,an improved Levenberg-Marquardt(LM) algorithm with adaptive learning rate is proposed to optimize the learning process of RBF neural ***,an improved LM algorithm is adopted using a quasi-Hessian matrix a... 详细信息
来源: 评论