咨询与建议

限定检索结果

文献类型

  • 538 篇 会议
  • 274 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 813 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 605 篇 工学
    • 402 篇 计算机科学与技术...
    • 344 篇 软件工程
    • 121 篇 信息与通信工程
    • 88 篇 控制科学与工程
    • 66 篇 机械工程
    • 53 篇 电子科学与技术(可...
    • 53 篇 生物工程
    • 46 篇 电气工程
    • 28 篇 化学工程与技术
    • 26 篇 光学工程
    • 17 篇 仪器科学与技术
    • 16 篇 建筑学
    • 16 篇 安全科学与工程
    • 15 篇 生物医学工程(可授...
    • 14 篇 动力工程及工程热...
    • 14 篇 土木工程
    • 12 篇 交通运输工程
    • 6 篇 网络空间安全
  • 274 篇 理学
    • 165 篇 数学
    • 53 篇 生物学
    • 50 篇 物理学
    • 50 篇 系统科学
    • 48 篇 统计学(可授理学、...
    • 29 篇 化学
  • 183 篇 管理学
    • 97 篇 图书情报与档案管...
    • 89 篇 管理科学与工程(可...
    • 25 篇 工商管理
  • 16 篇 法学
    • 15 篇 社会学
  • 9 篇 医学
    • 8 篇 临床医学
  • 8 篇 教育学
    • 8 篇 教育学
  • 4 篇 文学
  • 3 篇 经济学
  • 2 篇 农学
  • 2 篇 军事学

主题

  • 34 篇 wireless sensor ...
  • 31 篇 computer science
  • 31 篇 laboratories
  • 28 篇 face recognition
  • 26 篇 semantics
  • 23 篇 data mining
  • 22 篇 educational inst...
  • 20 篇 feature extracti...
  • 18 篇 computational mo...
  • 16 篇 image reconstruc...
  • 14 篇 telecommunicatio...
  • 14 篇 training
  • 13 篇 image coding
  • 13 篇 clustering algor...
  • 13 篇 robustness
  • 12 篇 control systems
  • 12 篇 cloud computing
  • 12 篇 intelligent sens...
  • 11 篇 target tracking
  • 11 篇 electronic mail

机构

  • 95 篇 beijing key labo...
  • 77 篇 beijing key labo...
  • 62 篇 beijing key labo...
  • 49 篇 beijing key labo...
  • 44 篇 school of electr...
  • 32 篇 school of comput...
  • 23 篇 beijing key labo...
  • 22 篇 seventh research...
  • 19 篇 beijing key labo...
  • 18 篇 school of econom...
  • 16 篇 beijing key labo...
  • 15 篇 beijing key labo...
  • 14 篇 beijing municipa...
  • 12 篇 school of comput...
  • 12 篇 beijing key labo...
  • 11 篇 beijing key labo...
  • 11 篇 seventh research...
  • 10 篇 beijing universi...
  • 9 篇 beijing municipa...
  • 9 篇 school of electr...

作者

  • 118 篇 junping du
  • 85 篇 yin baocai
  • 71 篇 du junping
  • 57 篇 yingmin jia
  • 50 篇 baocai yin
  • 41 篇 sun yanfeng
  • 36 篇 huadong ma
  • 34 篇 kong dehui
  • 31 篇 fashan yu
  • 24 篇 jia yingmin
  • 24 篇 zhang yong
  • 22 篇 yunhui shi
  • 22 篇 xue zhe
  • 22 篇 liang meiyu
  • 20 篇 meiyu liang
  • 19 篇 yanfeng sun
  • 17 篇 liang liu
  • 17 篇 ma huadong
  • 17 篇 hu yongli
  • 17 篇 li yawen

语言

  • 765 篇 英文
  • 32 篇 中文
  • 16 篇 其他
检索条件"机构=Beijing Key Laboratory of Multimedia and Intelligent Software Technology College of Computer"
813 条 记 录,以下是161-170 订阅
排序:
FedDLM: A Fine-Grained Assessment Scheme for Risk of Sensitive Information Leakage in Federated Learning-based Android Malware Classifier
FedDLM: A Fine-Grained Assessment Scheme for Risk of Sensiti...
收藏 引用
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
作者: Changnan Jiang Chunhe Xia Chen Chen Huacheng Li Tianbo Wang Xiaojian Li Beijing Key Lab. of Network Technology Beihang University Beijing China Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing Guangxi Normal University Guilin China School of Cyber Science and Technology Beihang University Beijing China Shanghai Key Laboratory of Computer Software Evaluating and Testing Shanghai China College of Computer Science and Information Technology Guangxi Normal University Guilin China
In the traditional centralized Android malware classification framework, privacy concerns arise as it requires collecting users’ app samples containing sensitive information directly. To address this problem, new cla... 详细信息
来源: 评论
HF-Mid: A Hybrid Framework of Network Intrusion Detection for Multi-type and Imbalanced Data
HF-Mid: A Hybrid Framework of Network Intrusion Detection fo...
收藏 引用
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
作者: Weidong Zhou Tianbo Wang Guotao Huang Xiaopeng Liang Chunhe Xia Xiaojian Li Beijing Key Lab. of Network Technology Beihang University Beijing China School of Cyber Science and Technology Beihang University Beijing China Shanghai Key Laboratory of Computer Software Evaluating and Testing Shanghai China Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing Guangxi Normal University Guilin China College of Computer Science and Information Technology Guangxi Normal University Guilin China
The data-driven deep learning methods have brought significant progress and potential to intrusion detection. However, there are two thorny problems caused by the characteristics of intrusion data: "multi-type fe... 详细信息
来源: 评论
MLFuse: Multi-Scenario Feature Joint Learning for Multi-Modality Image Fusion
收藏 引用
IEEE Transactions on multimedia 2025年
作者: Lei, Jia Li, Jiawei Liu, Jinyuan Wang, Bin Zhou, Shihua Zhang, Qiang Wei, Xiaopeng Kasabov, Nikola K. Dalian University Key Laboratory of Advanced Design and Intelligent Computing Ministry of Education School of Software Engineering Dalian116622 China University of Science and Technology Beijing School of Computer and Communication Engineering Beijing100083 China Dalian University of Technology School of Mechanical Engineering Dalian116024 China Dalian University of Technology School of Computer Science and Technology Dalian116024 China Auckland University of Technology Knowledge Engineering and Discovery Research Institute Auckland1010 New Zealand Ulster University Intelligent Systems Research Center LondonderryBT52 1SA United Kingdom
Multi-modality image fusion (MMIF) entails synthesizing images with detailed textures and prominent objects. Existing methods tend to use general feature extraction to handle different fusion tasks. However, these met... 详细信息
来源: 评论
CoHop
收藏 引用
ACM Transactions on Sensor Networks 2021年 第2期17卷
作者: Wang, Yuting Zheng, Xiaolong Liu, Liang Ma, Huadong School of Computer Science Beijing Key Laboratory of Intelligent Telecommunication Software and Multimedia Beijing University of Posts and Telecommunications No. 10 Xitucheng Road Beijing100876 China
Cross-technology Interference (CTI) badly harms the transmission reliability for low-power networks such as ZigBee at 2.4-GHz band. Though promising, channel hopping still faces challenges because the increasingly den... 详细信息
来源: 评论
Extract the knowledge of graph neural networks and go beyond it: An effective knowledge distillation framework
arXiv
收藏 引用
arXiv 2021年
作者: Yang, Cheng Liu, Jiawei Shi, Chuan School of Computer Science Beijing University of Posts and Telecommunications China Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia China
Semi-supervised learning on graphs is an important problem in the machine learning area. In recent years, state-of-the-art classification methods based on graph neural networks (GNNs) have shown their superiority over... 详细信息
来源: 评论
A method for detecting floating objects on water based on edge computing
A method for detecting floating objects on water based on ed...
收藏 引用
2023 IEEE International Symposium on Broadband multimedia Systems and Broadcasting, BMSB 2023
作者: Li, He Yang, Shuaipeng Liu, Jinjiang Fang, Honglin Fu, Zhumu Zhang, Rui Jia, Huimei Lv, Lianmeng Henan Costar Group Co. Ltd Henan Nanyang473003 China Henan University of Science and Technology College of Information Engineering Henan Luoyang471000 China Nanyang Normal University Henan Engineering Research Center of Intelligent Processing for Big Data of Digital Image School of Computer Science and Technology Nanyang473061 China Beijing University of Posts and Telecommunication State Key Laboratory of Networking and Switching Technology Beijing100876 China Xi'an Hengpin Electronic Technology Co. Ltd Xi'an710100 China
With the development and application of computer vision, many target detection networks are applied to the detection of floating objects in rivers. For the detection problems such as small targets easily missed and mi... 详细信息
来源: 评论
An Energy-Efficient Load Balance Strategy Based on Virtual Machine Consolidation in Cloud Environment
SSRN
收藏 引用
SSRN 2022年
作者: Yao, Wenbin Wang, Zhuqing Hou, Yingying Zhu, Xikang Li, Xiaoyong Xia, Yamei School of Computer science Beijing University of Posts and Telecommunications Beijing100876 China Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia Beijing University of Posts and Telecommunications Beijing100876 China School of Cyberspace Security Beijing University of Posts and Telecommunications Beijing100876 China
In the cloud computing environment, unbalanced utilization of multi-dimensional resources in physical servers generates resource fragmentation, leading to inefficient resource utilization and energy wastage in data ce... 详细信息
来源: 评论
A Lattice-Based Semantic Aware Multi-keyword Searchable Encryption for Multi-User Environments
SSRN
收藏 引用
SSRN 2022年
作者: Hou, Yingying Yao, Wenbin Li, Xiaoyong School of Computer science Beijing University of Posts and Telecommunications Beijing100876 China Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia Beijing University of Posts and Telecommunications Beijing100876 China School of Cyberspace Security Beijing University of Posts and Telecommunications Beijing100876 China
Searchable encryption is a key technology that can perform retrieval computation on ciphertext. The existing multi-keyword searchable encryption schemes generally use "coordinate matching" technology, which ... 详细信息
来源: 评论
A software Defect Prediction Method Based on Learnable Three-Line Hybrid Feature Fusion
SSRN
收藏 引用
SSRN 2023年
作者: Tang, Yu Dai, Qi Du, Ye Chen, Lifang Niu, Xuanwen School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China Department of Automation College of Information Science and Engineering China University of Petroleum-Beijing Beijing China Beijing Key Laboratory of Security and Privacy in Intelligent Transportation Beijing Jiaotong University Beijing100044 China College of Science North China University of Science and Technology Hebei Tangshan063210 China Hebei Key Laboratory of Data Science and Application Hebei Tangshan063210 China
software defect prediction plays a crucial role in ensuring the security and quality of software systems. However, it faces challenges posed by high-dimensional features present in software defect datasets and the lim... 详细信息
来源: 评论
Direct Participant Recruitment Strategy in Sparse Mobile Crowdsensing
收藏 引用
Jisuanji Xuebao/Chinese Journal of computers 2022年 第7期45卷 1539-1556页
作者: Tu, Chun-Yu Yu, Zhi-Yong Han, Lei Zhu, Wei-Ping Huang, Fang-Wan Guo, Wen-Zhong Wang, Le-Ye College of Mathematics and Computer Science Fuzhou University Fuzhou350108 China Department of Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China School of Computer Science Northwestern Polytechnical University Xi'an710072 China Key Lab of High Confidence Software Technologies Peking University Beijing100871 China School of Computer Science Peking University Beijing100871 China
Sparse Mobile Crowdsensing (Sparse MCS) selects a small part of sub-areas for data collection and infers the data of other sub-areas from the collected data. Compared with Mobile Crowdsensing (MCS) that does not use d... 详细信息
来源: 评论