咨询与建议

限定检索结果

文献类型

  • 535 篇 会议
  • 42 篇 期刊文献

馆藏范围

  • 577 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 381 篇 工学
    • 288 篇 信息与通信工程
    • 159 篇 计算机科学与技术...
    • 113 篇 软件工程
    • 91 篇 电子科学与技术(可...
    • 52 篇 控制科学与工程
    • 51 篇 航空宇航科学与技...
    • 45 篇 仪器科学与技术
    • 41 篇 光学工程
    • 30 篇 机械工程
    • 25 篇 生物工程
    • 24 篇 电气工程
    • 21 篇 土木工程
    • 21 篇 化学工程与技术
    • 19 篇 建筑学
    • 11 篇 测绘科学与技术
    • 11 篇 环境科学与工程(可...
    • 9 篇 安全科学与工程
    • 8 篇 动力工程及工程热...
  • 187 篇 理学
    • 111 篇 数学
    • 32 篇 物理学
    • 31 篇 生物学
    • 31 篇 统计学(可授理学、...
    • 25 篇 化学
    • 12 篇 大气科学
    • 9 篇 系统科学
    • 8 篇 地质学
  • 49 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 23 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 13 篇 农学
    • 8 篇 农业资源与环境
  • 11 篇 军事学
  • 4 篇 医学
  • 2 篇 教育学
  • 1 篇 经济学
  • 1 篇 法学

主题

  • 91 篇 synthetic apertu...
  • 24 篇 radar
  • 23 篇 radar imaging
  • 21 篇 feature extracti...
  • 16 篇 object detection
  • 15 篇 radar polarimetr...
  • 15 篇 target recogniti...
  • 15 篇 field programmab...
  • 14 篇 training
  • 13 篇 remote sensing
  • 11 篇 convolution
  • 11 篇 sar
  • 11 篇 accuracy
  • 10 篇 data processing
  • 10 篇 signal to noise ...
  • 10 篇 radar tracking
  • 10 篇 convolutional ne...
  • 9 篇 target tracking
  • 9 篇 field programmab...
  • 8 篇 imaging

机构

  • 215 篇 beijing key labo...
  • 147 篇 beijing key labo...
  • 72 篇 radar research l...
  • 65 篇 school of inform...
  • 54 篇 beijing institut...
  • 39 篇 advanced technol...
  • 33 篇 beijing key labo...
  • 29 篇 chongqing innova...
  • 23 篇 radar technology...
  • 19 篇 radar research l...
  • 18 篇 hubei province k...
  • 17 篇 beijing key labo...
  • 17 篇 school of electr...
  • 16 篇 school of inform...
  • 13 篇 beijing key labo...
  • 12 篇 beijing key labo...
  • 12 篇 college of compu...
  • 11 篇 zhengzhou academ...
  • 11 篇 shanghai institu...
  • 10 篇 beijing institut...

作者

  • 52 篇 ding zegang
  • 40 篇 chen he
  • 39 篇 he chen
  • 35 篇 chen liang
  • 33 篇 hu cheng
  • 30 篇 wang yanhua
  • 28 篇 liang chen
  • 26 篇 xie yizhuang
  • 26 篇 zegang ding
  • 25 篇 li yang
  • 25 篇 zeng tao
  • 24 篇 cheng hu
  • 24 篇 tao zeng
  • 22 篇 linbo tang
  • 21 篇 tang linbo
  • 20 篇 wang rui
  • 19 篇 teng long
  • 19 篇 tian weiming
  • 19 篇 zhang liang
  • 19 篇 yanhua wang

语言

  • 552 篇 英文
  • 22 篇 其他
  • 3 篇 中文
检索条件"机构=Beijing Key Laboratory of Real-Time Information Processing Technology of Embedded"
577 条 记 录,以下是171-180 订阅
排序:
Foundation PIT deformation measurement technique based on ground-based interferometric radar
Foundation PIT deformation measurement technique based on gr...
收藏 引用
IET International Radar Conference (IRC 2023)
作者: Changjun Wang Hanpu Zhou Jian Wang Jiake Gao Yunkai Deng Weiming Tian Beijing Building Research Institute Co. Ltd. of CSCEC Beijing 100076 People's Republic of China Radar Research Lab School of lnformation and Electronics Beijing lnstitute of Technology Beijing People's Republic of China Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing Institute of Technology Beijing People's Republic of China Chongqing Innovation Center Beijing Institute of Technology People's Republic of China Advanced Technology Research Institute Beijing Institute of Technology Jinan 250300 People's Republic of China
The deformation monitoring data of foundation pit is an important criterion for forecasting and strengthening measures in the field of building safety. During the construction period, the foundation pit will be affect...
来源: 评论
Pruning convolutional neural networks for remote sensing images  5
Pruning convolutional neural networks for remote sensing ima...
收藏 引用
IET International Radar Conference 2020, IET IRC 2020
作者: Qi, Baogui Xu, Yinsheng Chen, He Chen, Liang Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing Institute of Technology Beijing100081 China Beijing Institute of Technology Chongqing Innovation Center Chongqing401120 China Shanghai Institute of Satellite Engineering Shanghai200240 China
Deep convolutional neural networks (DCNNs) have shown excellent performance in remote sensing image processing. However, DCNNs contain many parameters and require many computational resources. It is very difficult to ... 详细信息
来源: 评论
SAR Parameter Estimation Method for Rectangle Plane Based on information Geometry
SAR Parameter Estimation Method for Rectangle Plane Based on...
收藏 引用
2019 IEEE International Conference on Signal, information and Data processing, ICSIDP 2019
作者: Wen, Yuhan Chen, Xinliang Wei, Yangkai Fan, Yujie Zeng, Tao DIng, Zegang Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing China
After establishing scattering models, the traditional synthetic aperture radar (SAR) parameter estimation methods usually utilize vanilla gradients to estimate target parameters from SAR echoes or images. However, the... 详细信息
来源: 评论
Merging Clinical Knowledge into Large Language Models for Medical Research and Applications: A Survey
arXiv
收藏 引用
arXiv 2025年
作者: Li, Qiyuan Liu, Haijiang Guo, Caicai Chen, Deyu Wang, Meng Gao, Feng Gu, Jinguang College of Computer Science and Technology Wuhan University of Science and Technology Hubei Wuhan430065 China Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System Hubei Wuhan430065 China The Key Laboratory of Rich-Media Knowledge Organization Service of Digital Publishing Content Institute of Scientific and Technical Information of China Beijing100038 China School of Computer Science and Technology Huazhong University of Science and Technology Hubei Wuhan430074 China School of Cyber Science and Engineering Wuhan University Hubei Wuhan430072 China
Clinical knowledge is the collection of information learned from studies on the causes, prognosis, diagnosis, and treatment of diseases. This type of knowledge can improve curing performances, and promote physical hea... 详细信息
来源: 评论
SAR Target Recognition Using Improved Monogenic-Based Feature Extraction Framework
SAR Target Recognition Using Improved Monogenic-Based Featur...
收藏 引用
IEEE International Conference on Radar
作者: Feng Li Weijun Yao Yang Li Wei Chen Radar Research Laboratory School of Information and Electronics Beijing Institute of Technology Beijing Institute of Technology Chongqing Innovation Center Beijing China Radar Research Lab Beijing Key Laboratory of Embedded Real-time Information Processing Technology School of Information and Electronics Beijing Institute of Technology Beijing China
Applying computer vision methods to synthetic aperture radar (SAR) image recognition is a research trend in recent years, and a series of valuable results have been achieved. In order to use machine learning classifie... 详细信息
来源: 评论
Lightweight convolutional neural network for false alarm elimination in SAR ship detection  5
Lightweight convolutional neural network for false alarm eli...
收藏 引用
IET International Radar Conference 2020, IET IRC 2020
作者: Zheng, Xingfei Feng, Yangkai Shi, Hao Zhang, Bocheng Chen, Liang Radar Research Lab School of Information and Electronics Beijing Institute of Technology Beijing China Shanghai Institute of Satllite Engineering Shanghai China Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing China Beijing Institute of Technology Chongqing Innovation Center Chongqing China
SAR ship detection is an important task of SAR image interpretation and plays a significant role in global marine surveillance. However, since there are usually many false alarms in the detection results, a desirable ... 详细信息
来源: 评论
Implementation of Automatic Face Detection System Based on ARM
Implementation of Automatic Face Detection System Based on A...
收藏 引用
2019 IEEE International Conference on Signal, information and Data processing, ICSIDP 2019
作者: Li, Keng Chen, He Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing China Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing Institute of Technology 5 South Zhongguancun Street Haidian District Beijing China
The embedded automatic face detection system is to locate the face region in the real scene. In order to reach a real-time performance, We adopt a cascaded structure of the convolution neural network model to solve fa... 详细信息
来源: 评论
Efficient and Lightweight Target Recognition for High Resolution Spaceborne SAR Images
Efficient and Lightweight Target Recognition for High Resolu...
收藏 引用
2019 IEEE International Conference on Signal, information and Data processing, ICSIDP 2019
作者: Pan, Yu Tang, Linbo Jing, Donglin Tang, Wei Zhou, Shichao Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing Institute of Technology Beijing China
Fast and reliable target recognition of the synthetic aperture radar (SAR) images has been widely used in the fields of the marine monitoring, military reconnaissance and strike all over the world. However, due to the... 详细信息
来源: 评论
FPGA-based accelerator for convolution operations
FPGA-based accelerator for convolution operations
收藏 引用
2019 IEEE International Conference on Signal, information and Data processing, ICSIDP 2019
作者: Cao, Yunfei Wei, Xin Qiao, Tingting Chen, He Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing China Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing Institute of Technology 5 South Zhongguancun Street Haidian District Beijing China
Convolutional neural networks have been widely used in many deep learning applications. Convolutional neural networks have a large number of convolution operations, which poses a huge challenge to real-time performanc... 详细信息
来源: 评论
Binary Separable Convolutional: An Efficient Fast Image Classification Method
Binary Separable Convolutional: An Efficient Fast Image Clas...
收藏 引用
2019 IEEE International Conference on Signal, information and Data processing, ICSIDP 2019
作者: Jing, Donglin Tang, Linbo Pan, Yu Tang, Wei Zhou, Shichao Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing Institute of Technology Beijing China
The training and running of neural network require large computational space and memory space, which makes it difficult to deploy on a resource-constrained embedded sys-tems. To address this limitation, we introduce a... 详细信息
来源: 评论