咨询与建议

限定检索结果

文献类型

  • 535 篇 会议
  • 42 篇 期刊文献

馆藏范围

  • 577 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 381 篇 工学
    • 288 篇 信息与通信工程
    • 159 篇 计算机科学与技术...
    • 113 篇 软件工程
    • 91 篇 电子科学与技术(可...
    • 52 篇 控制科学与工程
    • 51 篇 航空宇航科学与技...
    • 45 篇 仪器科学与技术
    • 41 篇 光学工程
    • 30 篇 机械工程
    • 25 篇 生物工程
    • 24 篇 电气工程
    • 21 篇 土木工程
    • 21 篇 化学工程与技术
    • 19 篇 建筑学
    • 11 篇 测绘科学与技术
    • 11 篇 环境科学与工程(可...
    • 9 篇 安全科学与工程
    • 8 篇 动力工程及工程热...
  • 187 篇 理学
    • 111 篇 数学
    • 32 篇 物理学
    • 31 篇 生物学
    • 31 篇 统计学(可授理学、...
    • 25 篇 化学
    • 12 篇 大气科学
    • 9 篇 系统科学
    • 8 篇 地质学
  • 49 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 23 篇 图书情报与档案管...
    • 7 篇 工商管理
  • 13 篇 农学
    • 8 篇 农业资源与环境
  • 11 篇 军事学
  • 4 篇 医学
  • 2 篇 教育学
  • 1 篇 经济学
  • 1 篇 法学

主题

  • 91 篇 synthetic apertu...
  • 24 篇 radar
  • 23 篇 radar imaging
  • 21 篇 feature extracti...
  • 16 篇 object detection
  • 15 篇 radar polarimetr...
  • 15 篇 target recogniti...
  • 15 篇 field programmab...
  • 14 篇 training
  • 13 篇 remote sensing
  • 11 篇 convolution
  • 11 篇 sar
  • 11 篇 accuracy
  • 10 篇 data processing
  • 10 篇 signal to noise ...
  • 10 篇 radar tracking
  • 10 篇 convolutional ne...
  • 9 篇 target tracking
  • 9 篇 field programmab...
  • 8 篇 imaging

机构

  • 215 篇 beijing key labo...
  • 147 篇 beijing key labo...
  • 72 篇 radar research l...
  • 65 篇 school of inform...
  • 54 篇 beijing institut...
  • 39 篇 advanced technol...
  • 33 篇 beijing key labo...
  • 29 篇 chongqing innova...
  • 23 篇 radar technology...
  • 19 篇 radar research l...
  • 18 篇 hubei province k...
  • 17 篇 beijing key labo...
  • 17 篇 school of electr...
  • 16 篇 school of inform...
  • 13 篇 beijing key labo...
  • 12 篇 beijing key labo...
  • 12 篇 college of compu...
  • 11 篇 zhengzhou academ...
  • 11 篇 shanghai institu...
  • 10 篇 beijing institut...

作者

  • 52 篇 ding zegang
  • 40 篇 chen he
  • 39 篇 he chen
  • 35 篇 chen liang
  • 33 篇 hu cheng
  • 30 篇 wang yanhua
  • 28 篇 liang chen
  • 26 篇 xie yizhuang
  • 26 篇 zegang ding
  • 25 篇 li yang
  • 25 篇 zeng tao
  • 24 篇 cheng hu
  • 24 篇 tao zeng
  • 22 篇 linbo tang
  • 21 篇 tang linbo
  • 20 篇 wang rui
  • 19 篇 teng long
  • 19 篇 tian weiming
  • 19 篇 zhang liang
  • 19 篇 yanhua wang

语言

  • 552 篇 英文
  • 22 篇 其他
  • 3 篇 中文
检索条件"机构=Beijing Key Laboratory of Real-Time Information Processing Technology of Embedded"
577 条 记 录,以下是311-320 订阅
排序:
SAR image denoising method based on sparse representation
SAR image denoising method based on sparse representation
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Zhou, Hao-Tian Chen, Liang Fu, Bo Shi, Hao Radar Research Laboratory School of Information and Electronics Beijing Institute of Technology Beijing100081 China Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing100081 China 95894 PLA Troops No. 5805 Mail-box Changping District Beijing102211 China
The coherent nature of radar illumination causes the speckle effect, which gives the synthetic aperture radar (SAR) image its noisy appearance. The probability distribution of speckle noise is multiplicative rather th... 详细信息
来源: 评论
Radar HRRP target recognition based on stacked denosing sparse autoencoder
Radar HRRP target recognition based on stacked denosing spar...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Tai, Guangxing Wang, Yanhua Li, Yang Hong, Wei Radar Research Lab School of Information and Electronics Beijing Institute of Technology Beijing100081 China Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing Institute of Technology Beijing100081 China Beijing Racobit Electronic Information Technology Co. Ltd. Beijing100081 China
An end-to-end radar high-resolution range profile recognition method is proposed based on stacked denosing sparse autoencoder which stacks several denosing sparse autoencoders and uses softmax as the classifier. The t... 详细信息
来源: 评论
Resolution analysis for geostationary spaceborne-airborne bistatic forward-looking SAR
Resolution analysis for geostationary spaceborne-airborne bi...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Ke, Meng Yin, Wei Zhang, Tianyi Yang, Yanjiao Ding, Zegang Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Radar Research Lab School of Information and Electronics Beijing Institute of Technology China No. 589 Zhongshan West road Shijiazhuang China Beijing Electro-Mechanical Engineering Institute Beijing China
Owing to the spatial separation of transmitter and receiver, bistatic SAR is able to image the area in front of the moving direction of transmitter or receiver, but the geometry model is more complex than that of mono... 详细信息
来源: 评论
Deep forest for radar HRRP recognition
Deep forest for radar HRRP recognition
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Wang, Yanhua Bi, Xuejie Chen, Wei Li, Yang Chen, Qiao Long, Teng Radar Research Lab School of Information and Electronics Beijing Institute of Technology Beijing China Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing Institute of Technology Beijing China Beijing Racobit Radar Technology Research Institute Co. Ltd. Beijing China
High-resolution range profile (HRRP) has received intensive attention in the radar automatic target recognition filed. Here, deep forest is applied to the recognition of HRRP. The deep forest is a deep learning method... 详细信息
来源: 评论
An improved Chinese text multi-label classification method based on CNN  13
An improved Chinese text multi-label classification method b...
收藏 引用
2020 13th International Conference on Computer and Electrical Engineering, ICCEE 2020
作者: Xin, Yuanxia Zhang, Zhi Collage of Computer Science and Technology Wuhan University of Science and Technology WuhanHubei430065 China Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System WuhanHubei430065 China Big Data Science and Engineering Research Institute Wuhan University of Science and Technology WuhanHubei430065 China
Text multi-label classification technology can accurately and quickly classify text information into related categories or topics, and help people quickly locate the required content in massive information resources, ... 详细信息
来源: 评论
Slow-time MIMO Radar Clutter Mitigation Based on Robust Pulse-to-Pulse Coding
Slow-Time MIMO Radar Clutter Mitigation Based on Robust Puls...
收藏 引用
Asian and Pacific Conference on Synthetic Aperture Radar (APSAR)
作者: Feng Xu Junqi Xue Xiaopeng Yang Fawei Yang Zhanze Wang Beijing Key Laboratory of Embedded Real-time Information Processing Technology School of Information and Electronics Beijing Institute of Technology Beijing China
Slow-time MIMO radar is investigated to deal with some cost sensitive applications like UAVs detection to avoid the use of arbitrary waveform generators and digital receivers. But this method suffers from the deterior... 详细信息
来源: 评论
Novel acceleration compensation method for highly squint mode SAR with curve trajectory
收藏 引用
The Journal of Engineering 2019年 第20期2019卷 6527-6532页
作者: Zhichao Zhou Zegang Ding Tao Zeng Gen Li Linghao Li School of Information and Electronics Beijing Institute Technology Beijing People's Republic of China Beijing Key Laboratory of Embedded Real-Time Information Processing Technology Beijing People's Republic of China
Due to the influence of air currents and the control of the platform's own power system, acceleration is often present in the motion platform equipped with synthetic aperture radar (SAR) system, which causes the a... 详细信息
来源: 评论
Polarised HRRP scattering centre estimation via atomic norm minimisation
Polarised HRRP scattering centre estimation via atomic norm ...
收藏 引用
IET International Radar Conference 2018, IRC 2018
作者: Liu, Haibo Xi, Ying Wang, Yanhua Li, Yang Zhao, Tong Radar Research Lab School of Information and Electronics Beijing Institute of Technology Beijing100081 China Beijing Key Laboratory of Embedded Real-time Information Processing Technology School of Information and Electronics Beijing Institute of Technology Beijing100081 China Beijing Racobit Radar Technology Research Institute Co. Ltd. Beijing100081 China
The combination of polarisation and high-resolution technology is a promising research direction for radar automatic target recognition. Fusing the polarisation information into the scattering centre model is able to ... 详细信息
来源: 评论
Cloud detection from visual band of satellite image based on variance of fractal dimension
收藏 引用
Journal of Systems Engineering and Electronics 2019年 第3期30卷 485-491页
作者: TIAN Pingfang GUANG Qiang LIU Xing School of Computer Science and Technology Wuhan University of Science and Technology Wuhan 430065 China Key Laboratory of Intelligent Information Processing and Real-Time Industrial System in Hubei Province Wuhan 430065 China Institute of Big Data Science and Engineering Wuhan University of Science and Technology Wuhan 430065 China Key Laboratory of Rich-Media Knowledge Organization and Service of Digital Publishing Content National Press and Publication Administration Beijing 100038 China
Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud de... 详细信息
来源: 评论
A Network Pruning Method for Remote Sensing Image Scene Classification
A Network Pruning Method for Remote Sensing Image Scene Clas...
收藏 引用
2019 IEEE International Conference on Signal, information and Data processing, ICSIDP 2019
作者: Qi, Baogui Chen, He Zhuang, Yin Liu, Shaorong Chen, Liang Beijing Key Laboratory of Embedded Real-time Information Processing Technology Beijing Institute of Technology Beijing100081 China School of Electronic Engineering and Computer Science Peking University Beijing100087 China Beijing Institute of Spacecraft System Engineering Beijing100094 China Beijing Institute of Technology Chongqing Innovation Center Chongqing401120 China
Deep convolutional neural networks have been widely used to improve remote sensing image scene classification performance. However, most of these networks include many parameters and need many computational resources.... 详细信息
来源: 评论