咨询与建议

限定检索结果

文献类型

  • 256 篇 期刊文献
  • 194 篇 会议

馆藏范围

  • 450 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 300 篇 工学
    • 204 篇 计算机科学与技术...
    • 176 篇 软件工程
    • 57 篇 信息与通信工程
    • 52 篇 控制科学与工程
    • 45 篇 生物工程
    • 41 篇 电子科学与技术(可...
    • 34 篇 机械工程
    • 25 篇 光学工程
    • 23 篇 电气工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 12 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 10 篇 建筑学
    • 9 篇 动力工程及工程热...
  • 217 篇 理学
    • 105 篇 数学
    • 61 篇 物理学
    • 48 篇 生物学
    • 31 篇 统计学(可授理学、...
    • 26 篇 系统科学
    • 19 篇 化学
  • 70 篇 管理学
    • 39 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 12 篇 医学
    • 12 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 20 篇 graph neural net...
  • 14 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 9 篇 semantics
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 synchronization
  • 6 篇 forecasting
  • 5 篇 conferences
  • 5 篇 object detection
  • 5 篇 face recognition

机构

  • 215 篇 beijing advanced...
  • 64 篇 beijing advanced...
  • 36 篇 school of comput...
  • 24 篇 school of econom...
  • 19 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 13 篇 peng cheng labor...
  • 10 篇 school of softwa...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 beihang universi...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...
  • 7 篇 beijing advanced...
  • 7 篇 fert beijing ins...
  • 7 篇 institute of inf...

作者

  • 42 篇 li jianxin
  • 41 篇 peng hao
  • 23 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 15 篇 weisheng zhao
  • 14 篇 fu xingcheng
  • 14 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 yunhong wang
  • 11 篇 jianxin li
  • 11 篇 ji cheng
  • 11 篇 hao peng
  • 11 篇 zhao jichang
  • 11 篇 he lifang

语言

  • 434 篇 英文
  • 9 篇 其他
  • 7 篇 中文
检索条件"机构=Bejing Advanced Innovation Center for Big Data and Brain Computing"
450 条 记 录,以下是1-10 订阅
排序:
Ultimate Negative Sampling for Contrastive Learning  48
Ultimate Negative Sampling for Contrastive Learning
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Guo, Huijie Shi, Lei Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing China
Unsupervised learning has received more attention due to the superior performance of contrastive learning methods. Most contrastive methods use data augmentation techniques to construct positive and negative pairs. Th... 详细信息
来源: 评论
Stability of connected and automated vehicles platoon considering communications failures
收藏 引用
Chinese Physics B 2023年 第7期32卷 598-609页
作者: 刘润坤 于海洋 任毅龙 崔志勇 School of Transportation Science and Engineering Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety ControlBeihang UniversityBeijing 100191China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang UniversityBeijing 100191China
As a form of a future traffic system,a connected and automated vehicle(CAV)platoon is a typical nonlinear physical *** can communicate with each other and exchange ***,communication failures can change the platoon sys... 详细信息
来源: 评论
Distributed Truss Computation in Dynamic Graphs
收藏 引用
Tsinghua Science and Technology 2023年 第5期28卷 873-887页
作者: Ziwei Mo Qi Luo Dongxiao Yu Hao Sheng Jiguo Yu Xiuzhen Cheng School of Computer Science and Technology Shandong UniversityQingdao 266200China State Key Laboratory of Software Development Environment School of Computer Science and Engineering and the Beijing Advanced Innovation Center for Big Data and Brain ComputingBeihang UniversityBeijing 100191China Big Data Institute Qilu University of Technology(Shandong Academy of Sciences)Jinan 250353China
Large-scale graphs usually exhibit global sparsity with local cohesiveness,and mining the representative cohesive subgraphs is a fundamental problem in graph *** k-truss is one of the most commonly studied cohesive su... 详细信息
来源: 评论
RankFIRST: Visual Analysis for Factor Investment By Ranking Stock Timeseries
收藏 引用
IEEE Transactions on Visualization and Computer Graphics 2022年 PP卷 1-10页
作者: Guo, Huijie Liu, Meijun Yang, Bowen Sun, Ye Qu, Huamin Shi, Lei SKLSDE and Beijing Advanced Innovation Center for Big Data and Brain Computing School of Computer Science and Engineering Beihang University China Hong Kong University of Science and Technology Hong Kong
In the era of quantitative investment, factor-based investing models are widely adopted in the construction of stock portfolios. These models explain the performance of individual stocks by a set of financial factors,... 详细信息
来源: 评论
Analysis on n-level quantum systems by means of a coordinate transformation  63
Analysis on n-level quantum systems by means of a coordinate...
收藏 引用
63rd IEEE Conference on Decision and Control, CDC 2024
作者: Xu, Huilong Miao, Zibo Gao, Qing Harbin Institute of Technology School of Mechanical Engineering and Automation Shenzhen518055 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University School of Automation Science and Electrical Engineering Beijing100191 China
The structural decomposition of two-level quantum systems has recently been established, related to various applications in quantum information science. As an extension to previous work on two-level quantum systems, t... 详细信息
来源: 评论
Ultimate Negative Sampling for Contrastive Learning
Ultimate Negative Sampling for Contrastive Learning
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Huijie Guo Lei Shi Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
Unsupervised learning has received more attention due to the superior performance of contrastive learning methods. Most contrastive methods use data augmentation techniques to construct positive and negative pairs. Th... 详细信息
来源: 评论
POINE2: Improving Poincaré Embeddings for Hierarchy-Aware Complex Query Reasoning over Knowledge Graphs  26
POINE2: Improving Poincaré Embeddings for Hierarchy-Aware C...
收藏 引用
26th European Conference on Artificial Intelligence, ECAI 2023
作者: Liu, Junnan Mao, Qianren Li, Jianxin Fu, Xingcheng Wang, Zheng School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing China Zhongguancun Laboratory Beijing China The School of Computing University of Leeds United Kingdom
Reasoning complex logical queries on incomplete and massive knowledge graphs (KGs) remains a significant challenge. The prevailing method for this problem is query embedding, which embeds KG units (i.e., entities and ... 详细信息
来源: 评论
Analysis of Factors Influencing Driver Lane-Changing Intentions Based on a Naturalistic Trajectory data Set on Highways  24
Analysis of Factors Influencing Driver Lane-Changing Intenti...
收藏 引用
24th COTA International Conference of Transportation Professionals: Resilient, Intelligent, Connected, and Lowcarbon Multimodal Transportation, CICTP 2024
作者: Wang, Guangchen Lu, Guangquan Wang, Jinghua Liu, Miaomiao School of Transportation Science and Engineering Beihang Univ. Beijing China Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control National Engineering Laboratory for Comprehensive Transportation Big Data Application Technology Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang Univ. Beijing China
Accurately analyzing and predicting driver lane-changing intentions is of paramount importance, as it significantly enhances the safety of self-driving vehicles in their decision-making processes, holding great promis... 详细信息
来源: 评论
Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality
收藏 引用
Chinese Physics B 2023年 第10期32卷 635-640页
作者: 张雪枫 沈帝虎 马晓萍 宋成 于海明 朴红光 Hubei Engineering Research Center of Weak Magnetic-Field Detection China Three Gorges UniversityYichang 443002China Department of Physics College of ScienceYanbian UniversityYanji 133002China Key Laboratory of Advanced Materials(MOE) School of Materials Science and EngineeringTsinghua UniversityBeijing 100084China Fert Beijing Institute School of Integrated Circuit Science and EngineeringBeijing Advanced Innovation Center for Big Data and Brain ComputingBeihang UniversityBeijing 100191China
We investigate asymmetric spin wave scattering behaviors caused by vortex chirality in a cross-shaped ferromagnetic system by using the micromagnetic *** the system,four scattering behaviors are found:(i)asymmetric sk... 详细信息
来源: 评论
Learning from Noisy Crowd Labels with Logics  39
Learning from Noisy Crowd Labels with Logics
收藏 引用
39th IEEE International Conference on data Engineering, ICDE 2023
作者: Chen, Zhijun Sun, Hailong He, Haoqian Chen, Pengpeng Beihang University Sklsde Lab Beijing China Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing China China's Aviation System Engineering Research Institute Beijing China
This paper explores the integration of symbolic logic knowledge into deep neural networks for learning from noisy crowd labels. We introduce Logic-guided Learning from Noisy Crowd Labels (Logic-LNCL), an EM-alike iter... 详细信息
来源: 评论