咨询与建议

限定检索结果

文献类型

  • 209 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 254 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 188 篇 工学
    • 134 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 45 篇 生物工程
    • 26 篇 化学工程与技术
    • 20 篇 信息与通信工程
    • 18 篇 光学工程
    • 14 篇 生物医学工程(可授...
    • 13 篇 动力工程及工程热...
    • 13 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 机械工程
    • 10 篇 建筑学
    • 8 篇 仪器科学与技术
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 控制科学与工程
    • 5 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
  • 136 篇 理学
    • 60 篇 数学
    • 49 篇 化学
    • 49 篇 生物学
    • 48 篇 物理学
    • 29 篇 统计学(可授理学、...
    • 5 篇 大气科学
  • 39 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 13 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 6 篇 药学(可授医学、理...
  • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 文学

主题

  • 18 篇 deep neural netw...
  • 18 篇 machine learning
  • 7 篇 adversarial mach...
  • 7 篇 remote sensing
  • 7 篇 molecular dynami...
  • 5 篇 deep learning
  • 5 篇 image classifica...
  • 4 篇 inverse problems
  • 4 篇 decision making
  • 4 篇 forecasting
  • 3 篇 generative adver...
  • 3 篇 training data
  • 3 篇 transformers
  • 3 篇 self-supervised ...
  • 3 篇 computational li...
  • 3 篇 semantics
  • 3 篇 image compressio...
  • 3 篇 carrier concentr...
  • 3 篇 federated learni...
  • 3 篇 training

机构

  • 48 篇 bifold - berlin ...
  • 37 篇 bifold – berlin ...
  • 32 篇 machine learning...
  • 32 篇 machine learning...
  • 28 篇 bifold berlin in...
  • 23 篇 department of ar...
  • 22 篇 vector institute...
  • 22 篇 berlin institute...
  • 19 篇 faculty of elect...
  • 18 篇 department of ar...
  • 15 篇 technische unive...
  • 14 篇 max planck insti...
  • 13 篇 bifold - berlin ...
  • 13 篇 google research ...
  • 13 篇 bifold berlin in...
  • 13 篇 berlin institute...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 10 篇 technische unive...
  • 10 篇 department of ph...

作者

  • 71 篇 müller klaus-rob...
  • 47 篇 samek wojciech
  • 35 篇 lapuschkin sebas...
  • 26 篇 montavon grégoir...
  • 24 篇 demir begüm
  • 23 篇 von lilienfeld o...
  • 16 篇 nakajima shinich...
  • 13 篇 von rudorff guid...
  • 13 篇 begüm demir
  • 12 篇 höhne marina m.-...
  • 12 篇 dreyer maximilia...
  • 11 篇 wiegand thomas
  • 11 篇 unke oliver t.
  • 11 篇 eberle oliver
  • 10 篇 klauschen freder...
  • 10 篇 gastegger michae...
  • 10 篇 ruff lukas
  • 9 篇 schütt kristof t...
  • 9 篇 chmiela stefan
  • 8 篇 khan danish

语言

  • 225 篇 英文
  • 29 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Berlin Institute for the Foundations of Learning and Data"
254 条 记 录,以下是1-10 订阅
排序:
Connecting Concept Convexity and Human-Machine Alignment in Deep Neural Networks  6
Connecting Concept Convexity and Human-Machine Alignment in ...
收藏 引用
6th Northern Lights Deep learning Conference, NLDL 2025
作者: Dorszewski, Teresa Tětková, Lenka Linhardt, Lorenz Hansen, Lars Kai Section for Cognitive Systems DTU Compute Technical University of Denmark Denmark Machine Learning Group Technische Universität Berlin Germany Berlin Institute for the Foundations of Learning and Data – BIFOLD Germany
Understanding how neural networks align with human cognitive processes is a crucial step toward developing more interpretable and reliable AI systems. Motivated by theories of human cognition, this study examines the ... 详细信息
来源: 评论
Deep learning-based bathymetry retrieval without in-situ depths using remote sensing imagery and SfM-MVS DSMs with data gaps
收藏 引用
ISPRS Journal of Photogrammetry and Remote Sensing 2025年 225卷 341-361页
作者: Agrafiotis, Panagiotis Demir, Begüm Faculty of Electrical Engineering and Computer Science Technische Universität Berlin Berlin10587 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Accurate, detailed, and high-frequent bathymetry is crucial for shallow seabed areas facing intense climatological and anthropogenic pressures. Current methods utilizing airborne or satellite optical imagery to derive... 详细信息
来源: 评论
Mechanistic understanding and validation of large AI models with SemanticLens
arXiv
收藏 引用
arXiv 2025年
作者: Dreyer, Maximilian Berend, Jim Labarta, Tobias Vielhaben, Johanna Wiegand, Thomas Lapuschkin, Sebastian Samek, Wojciech Fraunhofer Heinrich Hertz Institute Germany Technische Universität Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany
Unlike human-engineered systems such as aeroplanes, where each component’s role and dependencies are well understood, the inner workings of AI models remain largely opaque, hindering verifiability and undermining tru...
来源: 评论
Beyond De-Identification: A Structured Approach for Defining and Detecting Indirect Identifiers in Medical Texts
arXiv
收藏 引用
arXiv 2025年
作者: Baroud, Ibrahim Raithel, Lisa Möller, Sebastian Roller, Roland Quality & Usability Lab Technische Universität Berlin Germany Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany
Sharing sensitive texts for scientific purposes requires appropriate techniques to protect the privacy of patients and healthcare personnel. Anonymizing textual data is particularly challenging due to the presence of ... 详细信息
来源: 评论
COMMUNICATION-EFFICIENT FEDERATED learning BASED ON EXPLANATION-GUIDED PRUNING FOR REMOTE SENSING IMAGE CLASSIFICATION
arXiv
收藏 引用
arXiv 2025年
作者: Klotz, Jonas Büyüktaş, Barış Demir, Begüm BIFOLD - Berlin Institute for the Foundations of Learning and Data Germany Faculty of Electrical Engineering and Computer Science Technische Universität Berlin Germany
Federated learning (FL) is a decentralized machine learning paradigm, where multiple clients collaboratively train a global model by exchanging only model updates with the central server without sharing the local data... 详细信息
来源: 评论
AttnLRP: attention-aware layer-wise relevance propagation for transformers  24
AttnLRP: attention-aware layer-wise relevance propagation fo...
收藏 引用
Proceedings of the 41st International Conference on Machine learning
作者: Reduan Achtibat Sayed Mohammad Vakilzadeh Hatefi Maximilian Dreyer Aakriti Jain Thomas Wiegand Sebastian Lapuschkin Wojciech Samek Fraunhofer Heinrich-Hertz-Institute Berlin Germany Fraunhofer Heinrich-Hertz-Institute Berlin Germany and Technische Universität Berlin Berlin Germany and BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany
Large Language Models are prone to biased predictions and hallucinations, underlining the paramount importance of understanding their model-internal reasoning process. However, achieving faithful attributions for the ...
来源: 评论
Deep learning-based Bathymetry Retrieval without In-situ Depths using Remote Sensing Imagery and SfM-MVS DSMs with data Gaps
arXiv
收藏 引用
arXiv 2025年
作者: Agrafiotis, Panagiotis Demir, Begüm Faculty of Electrical Engineering and Computer Science Technische Universität Berlin Berlin10587 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany
Accurate, detailed, and high-frequent bathymetry is crucial for shallow seabed areas facing intense climatological and anthropogenic pressures. Current methods utilizing airborne or satellite optical imagery to derive... 详细信息
来源: 评论
FITCF: A Framework for Automatic Feature Importance-guided Counterfactual Example Generation
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Qianli Feldhus, Nils Ostermann, Simon Villa-Arenas, Luis Felipe Möller, Sebastian Schmitt, Vera Germany Technische Universität Berlin Germany Saarland Informatics Campus Germany Deutsche Telekom Germany Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Germany
Counterfactual examples are widely used in natural language processing (NLP) as valuable data to improve models, and in explainable artificial intelligence (XAI) to understand model behavior. The automated generation ... 详细信息
来源: 评论
A Multi-Modal Federated learning Framework for Remote Sensing Image Classification
arXiv
收藏 引用
arXiv 2025年
作者: Büyüktaş, Barış Sumbul, Gencer Demir, Begüm Faculty of Electrical Engineering and Computer Science Technische Universität Berlin Berlin10623 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin10623 Germany Sion1950 Switzerland
Federated learning (FL) enables the collaborative training of deep neural networks across decentralized data archives (i.e., clients) without sharing the local data of the clients. Most of the existing FL methods assu... 详细信息
来源: 评论
Sparser, Better, Faster, Stronger: Efficient Automatic Differentiation for Sparse Jacobians and Hessians
arXiv
收藏 引用
arXiv 2025年
作者: Hill, Adrian Dalle, Guillaume BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany Machine Learning Group Technical University of Berlin Berlin Germany LVMT ENPC Institut Polytechnique de Paris Univ Gustave Eiffel Marne-la-Vallée France
From implicit differentiation to probabilistic modeling, Jacobians and Hessians have many potential use cases in Machine learning (ML), but conventional wisdom views them as computationally prohibitive. Fortunately, t... 详细信息
来源: 评论