咨询与建议

限定检索结果

文献类型

  • 209 篇 期刊文献
  • 45 篇 会议

馆藏范围

  • 254 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 188 篇 工学
    • 134 篇 计算机科学与技术...
    • 125 篇 软件工程
    • 45 篇 生物工程
    • 26 篇 化学工程与技术
    • 20 篇 信息与通信工程
    • 18 篇 光学工程
    • 14 篇 生物医学工程(可授...
    • 13 篇 动力工程及工程热...
    • 13 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 11 篇 机械工程
    • 10 篇 建筑学
    • 8 篇 仪器科学与技术
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 控制科学与工程
    • 5 篇 安全科学与工程
    • 4 篇 材料科学与工程(可...
  • 136 篇 理学
    • 60 篇 数学
    • 49 篇 化学
    • 49 篇 生物学
    • 48 篇 物理学
    • 29 篇 统计学(可授理学、...
    • 5 篇 大气科学
  • 39 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 11 篇 工商管理
  • 13 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 6 篇 药学(可授医学、理...
  • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 文学

主题

  • 18 篇 deep neural netw...
  • 18 篇 machine learning
  • 7 篇 adversarial mach...
  • 7 篇 remote sensing
  • 7 篇 molecular dynami...
  • 5 篇 deep learning
  • 5 篇 image classifica...
  • 4 篇 inverse problems
  • 4 篇 decision making
  • 4 篇 forecasting
  • 3 篇 generative adver...
  • 3 篇 training data
  • 3 篇 transformers
  • 3 篇 self-supervised ...
  • 3 篇 computational li...
  • 3 篇 semantics
  • 3 篇 image compressio...
  • 3 篇 carrier concentr...
  • 3 篇 federated learni...
  • 3 篇 training

机构

  • 48 篇 bifold - berlin ...
  • 37 篇 bifold – berlin ...
  • 32 篇 machine learning...
  • 32 篇 machine learning...
  • 28 篇 bifold berlin in...
  • 23 篇 department of ar...
  • 22 篇 vector institute...
  • 22 篇 berlin institute...
  • 19 篇 faculty of elect...
  • 18 篇 department of ar...
  • 15 篇 technische unive...
  • 14 篇 max planck insti...
  • 13 篇 bifold - berlin ...
  • 13 篇 google research ...
  • 13 篇 bifold berlin in...
  • 13 篇 berlin institute...
  • 12 篇 machine learning...
  • 12 篇 departments of c...
  • 10 篇 technische unive...
  • 10 篇 department of ph...

作者

  • 71 篇 müller klaus-rob...
  • 47 篇 samek wojciech
  • 35 篇 lapuschkin sebas...
  • 26 篇 montavon grégoir...
  • 24 篇 demir begüm
  • 23 篇 von lilienfeld o...
  • 16 篇 nakajima shinich...
  • 13 篇 von rudorff guid...
  • 13 篇 begüm demir
  • 12 篇 höhne marina m.-...
  • 12 篇 dreyer maximilia...
  • 11 篇 wiegand thomas
  • 11 篇 unke oliver t.
  • 11 篇 eberle oliver
  • 10 篇 klauschen freder...
  • 10 篇 gastegger michae...
  • 10 篇 ruff lukas
  • 9 篇 schütt kristof t...
  • 9 篇 chmiela stefan
  • 8 篇 khan danish

语言

  • 225 篇 英文
  • 29 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Berlin Institute for the Foundations of Learning and Data"
254 条 记 录,以下是51-60 订阅
排序:
AN ANALYSIS OF HUMAN ALIGNMENT OF LATENT DIFFUSION MODELS
arXiv
收藏 引用
arXiv 2024年
作者: Linhardt, Lorenz Morik, Marco Bender, Sidney Borras, Naima Elosegui Machine Learning Group Technische Universität Berlin Berlin10623 Germany Berlin Institute for the Foundations of Learning and Data - BIFOLD Berlin10586 Germany
Diffusion models, trained on large amounts of data, showed remarkable performance for image synthesis. They have high error consistency with humans and low texture bias when used for classification. Furthermore, prior... 详细信息
来源: 评论
ECQx: Explainability-Driven Quantization for Low-Bit and Sparse DNNs
arXiv
收藏 引用
arXiv 2021年
作者: Becking, Daniel Dreyer, Maximilian Samek, Wojciech Müller, Karsten Lapuschkin, Sebastian Department of Artificial Intelligence Fraunhofer Heinrich Hertz Institute Berlin Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany
The remarkable success of deep neural networks (DNNs) in various applications is accompanied by a significant increase in network parameters and arithmetic operations. Such increases in memory and computational demand... 详细信息
来源: 评论
So3krates: equivariant attention for interactions on arbitrary length-scales in molecular systems  22
So3krates: equivariant attention for interactions on arbitra...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: J. Thorben Frank Oliver T. Unke Klaus-Robert Müller Machine Learning Group TU Berlin Berlin Germany and BIFOLD Berlin Institute for the Foundations of Learning and Data Germany Machine Learning Group TU Berlin Berlin Germany and BIFOLD Berlin Institute for the Foundations of Learning and Data Germany and Google Research Brain team Berlin Machine Learning Group TU Berlin Berlin Germany and BIFOLD Berlin Institute for the Foundations of Learning and Data Germany and Google Research Brain team Berlin and Department of Artificial Intelligence Korea University Seoul Korea and Max Planck Institut für Informatik Saarbrücken Germany
The application of machine learning methods in quantum chemistry has enabled the study of numerous chemical phenomena, which are computationally intractable with traditional ab-initio methods. However, some quantum me...
来源: 评论
MambaLRP: Explaining Selective State Space Sequence Models  38
MambaLRP: Explaining Selective State Space Sequence Models
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Jafari, Farnoush Rezaei Montavon, Grégoire Müller, Klaus-Robert Eberle, Oliver Machine Learning Group Technische Universität Berlin Berlin10587 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 14 Berlin14195 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany Google DeepMind Berlin Germany
Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and...
来源: 评论
xMIL: Insightful Explanations for Multiple Instance learning in Histopathology  38
xMIL: Insightful Explanations for Multiple Instance Learning...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Hense, Julius Idaji, Mina Jamshidi Eberle, Oliver Schnake, Thomas Dippel, Jonas Ciernik, Laure Buchstab, Oliver Mock, Andreas Klauschen, Frederick Müller, Klaus-Robert Berlin Institute for the Foundations of Learning and Data Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany Aignostics GmbH Berlin Germany Institute of Pathology Ludwig Maximilian University Munich Germany German Cancer Research Center Heidelberg Germany German Cancer Consortium Munich Germany Institute of Pathology Charité Universitätsmedizin Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max-Planck Institute for Informatics Saarbrücken Germany
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker...
来源: 评论
Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with Prototypical Concept-based Explanations
arXiv
收藏 引用
arXiv 2023年
作者: Dreyer, Maximilian Achtibat, Reduan Samek, Wojciech Lapuschkin, Sebastian Fraunhofer Heinrich Hertz Institute Germany Technical University of Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany
Ensuring both transparency and safety is critical when deploying Deep Neural Networks (DNNs) in high-risk applications, such as medicine. The field of explainable AI (XAI) has proposed various methods to comprehend th... 详细信息
来源: 评论
Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression
arXiv
收藏 引用
arXiv 2024年
作者: Bareeva, Dilyara Dreyer, Maximilian Pahde, Frederik Samek, Wojciech Lapuschkin, Sebastian Fraunhofer Heinrich Hertz Institute Germany Technical University of Berlin Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Germany
Deep Neural Networks are prone to learning and relying on spurious correlations in the training data, which, for high-risk applications, can have fatal consequences. Various approaches to suppress model reliance on ha... 详细信息
来源: 评论
LIT-4-RSVQA: LIGHTWEIGHT TRANSFORMER-BASED VISUAL QUESTION ANSWERING IN REMOTE SENSING
arXiv
收藏 引用
arXiv 2023年
作者: Hackel, Leonard Clasen, Kai Norman Ravanbakhsh, Mahdyar Demir, Begüm Technische Universität Berlin Germany Zalando SE Berlin Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Germany
Visual question answering (VQA) methods in remote sensing (RS) aim to answer natural language questions with respect to an RS image. Most of the existing methods require a large amount of computational resources, whic... 详细信息
来源: 评论
LIT-4-RSVQA: Lightweight Transformer-Based Visual Question Answering in Remote Sensing
LIT-4-RSVQA: Lightweight Transformer-Based Visual Question A...
收藏 引用
IEEE International Symposium on Geoscience and Remote Sensing (IGARSS)
作者: Leonard Hackel Kai Norman Clasen Mahdyar Ravanbakhsh Begüm Demir Technische Universität Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany Zalando SE Berlin Germany
Visual question answering (VQA) methods in remote sensing (RS) aim to answer natural language questions with respect to an RS image. Most of the existing methods require a large amount of computational resources, whic...
来源: 评论
PURE: Turning Polysemantic Neurons Into Pure Features by Identifying Relevant Circuits
arXiv
收藏 引用
arXiv 2024年
作者: Dreyer, Maximilian Purelku, Erblina Vielhaben, Johanna Samek, Wojciech Lapuschkin, Sebastian Fraunhofer Heinrich Hertz Institute Germany Technical University of Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Germany
The field of mechanistic interpretability aims to study the role of individual neurons in Deep Neural Networks. Single neurons, however, have the capability to act poly-semantically and encode for multiple (unrelated)... 详细信息
来源: 评论