咨询与建议

限定检索结果

文献类型

  • 432 篇 期刊文献
  • 254 篇 会议

馆藏范围

  • 686 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 498 篇 工学
    • 364 篇 计算机科学与技术...
    • 306 篇 软件工程
    • 110 篇 信息与通信工程
    • 94 篇 生物医学工程(可授...
    • 94 篇 生物工程
    • 73 篇 电气工程
    • 61 篇 控制科学与工程
    • 55 篇 光学工程
    • 51 篇 电子科学与技术(可...
    • 32 篇 机械工程
    • 31 篇 仪器科学与技术
    • 23 篇 化学工程与技术
    • 21 篇 动力工程及工程热...
    • 20 篇 建筑学
    • 17 篇 土木工程
    • 14 篇 交通运输工程
  • 288 篇 理学
    • 121 篇 数学
    • 113 篇 生物学
    • 66 篇 物理学
    • 48 篇 统计学(可授理学、...
    • 27 篇 化学
    • 21 篇 系统科学
  • 144 篇 管理学
    • 83 篇 管理科学与工程(可...
    • 57 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 82 篇 医学
    • 71 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
    • 27 篇 公共卫生与预防医...
  • 23 篇 法学
    • 17 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 7 篇 经济学
  • 4 篇 艺术学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 26 篇 deep learning
  • 19 篇 machine learning
  • 15 篇 big data
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 11 篇 accuracy
  • 11 篇 data models
  • 11 篇 training
  • 9 篇 internet of thin...
  • 9 篇 optimization
  • 9 篇 feature extracti...
  • 9 篇 forecasting
  • 8 篇 predictive model...
  • 8 篇 semantics
  • 7 篇 reinforcement le...
  • 7 篇 image segmentati...
  • 7 篇 computational mo...
  • 7 篇 sentiment analys...
  • 7 篇 federated learni...
  • 6 篇 object detection

机构

  • 34 篇 beijing advanced...
  • 18 篇 national enginee...
  • 15 篇 department of co...
  • 15 篇 school of comput...
  • 14 篇 school of comput...
  • 12 篇 innovation cente...
  • 11 篇 innovation cente...
  • 11 篇 school of cyber ...
  • 10 篇 department of el...
  • 9 篇 the department o...
  • 8 篇 department of in...
  • 8 篇 big data researc...
  • 8 篇 university of ch...
  • 8 篇 school of scienc...
  • 8 篇 college of compu...
  • 8 篇 shenzhen researc...
  • 7 篇 the purple mount...
  • 7 篇 computer network...
  • 7 篇 national demonst...
  • 7 篇 department of el...

作者

  • 24 篇 jin hai
  • 21 篇 peng hao
  • 19 篇 hai jin
  • 18 篇 chien ting-ying
  • 15 篇 li jianxin
  • 15 篇 zhou pan
  • 13 篇 zhang rui
  • 13 篇 yu philip s.
  • 11 篇 yu liang-chih
  • 11 篇 wu tsu-yang
  • 11 篇 zeng yong
  • 10 篇 chen chien-ming
  • 10 篇 pan jeng-shyang
  • 10 篇 he lifang
  • 9 篇 ting hsien-wei
  • 9 篇 jin shi
  • 9 篇 qiu robert
  • 8 篇 lai k. robert
  • 8 篇 wang king-hang
  • 8 篇 li kang

语言

  • 627 篇 英文
  • 53 篇 其他
  • 7 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Big Data Experience Center and Department of Computer Engineering"
686 条 记 录,以下是511-520 订阅
排序:
Security analysis of a public key authenticated encryption with keyword search scheme  14th
Security analysis of a public key authenticated encryption w...
收藏 引用
14th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2018
作者: Wu, Tsu-Yang Chen, Chien-Ming Wang, King-Hang Wu, Jimmy Ming-Tai Pan, Jeng-Shyang Fujian Provincial Key Lab of Big Data Mining and Applications Fujian University of Technology Fuzhou350118 China National Demonstration Center for Experimental Electronic Information and Electrical Technology Education Fujian University of Technology Fuzhou350118 China Shenzhen518055 China Department of Computer Science and Engineering Hong Kong University of Science and Technology Clear Water Bay Hong Kong College of Computer Science and Engineering Shandong University of Science and Technology Qingdao266590 China
In order to solve the security problem that off-line keyword guessing attacks existed in PEKS or dPEKS scheme, Huang and Li introduced a new security model called PAEKS. In this paper, we show that their scheme didn’... 详细信息
来源: 评论
Estimation of high-dimensional factor models and its application in power data analysis
arXiv
收藏 引用
arXiv 2019年
作者: Shi, Xin Qiu, Robert Mi, Tiebin Center for Big Data and Artificial Intelligence Shanghai Jiao Tong University Shanghai200240 China Department of Electrical and Computer Engineering Tennessee Technological University CookevilleTN38505 United States
In dealing with high-dimensional data, factor models are often used for reducing dimensions and extracting relevant information. The spectrum of covariance matrices from power data exhibits two aspects: 1) bulk, which... 详细信息
来源: 评论
Corrigendum to “Understanding the urban mobility community by taxi travel trajectory” [Commun. Nonlinear Sci. Numer. Simul. 101(2021) 105863/6]
收藏 引用
Communications in Nonlinear Science and Numerical Simulation 2022年 104卷
作者: Wei-Peng Nie Zhi-Dan Zhao Shi-Min Cai Tao Zhou Complex Lab School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 China Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 China Big Data Research Center University of Electronic Science and Technology of China Chengdu 610054 China Complexity Computation Laboratory Department of Computer Science School of Engineering Shantou University Shantou 515063 China Key Laboratory of Intelligent Manufacturing Technology (Ministry of Education) Shantou University Shantou 515063 China
来源: 评论
Impact of temperature and relative humidity on the transmission of COVID-19: A modeling study in China and the United States
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Jingyuan Tang, Ke Feng, Kai Lin, Xin Lv, Weifeng Chen, Kun Wang, Fei School of Computer Science and Engineering Beihang University China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China School of Social Sciences Tsinghua University China State Key Laboratory of Software Development Environment Beihang University China Department of Statistics University of Connecticut United States Center for Population Health University of Connecticut Health Center United States Department of Population Health Sciences Weill Cornell Medical College Cornell University United States
Objectives We aim to assess the impact of temperature and relative humidity on the transmission of COVID-19 across communities after accounting for community-level factors such as demographics, socioeconomic status, a... 详细信息
来源: 评论
SPINBIS: Spintronics based Bayesian Inference System with Stochastic Computing
arXiv
收藏 引用
arXiv 2019年
作者: Jia, Xiaotao Yang, Jianlei Dai, Pengcheng Liu, Runze Chen, Yiran Zhao, Weisheng Advanced Innovation Center for Big Data and Brain Computing Fert Beijing Research Institute School of microelectronics Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Fert Beijing Research Institute School of Computer Science and Engineering Beihang University Beijing100191 China Department of Electrical and Computer Engineering Duke University NC Durham27708 United States
Bayesian inference is an effective approach for solving statistical learning problems, especially with uncertainty and incompleteness. However, Bayesian inference is a computing-intensive task whose efficiency is phys... 详细信息
来源: 评论
Early Anomaly Detection in Power Systems Based on Random Matrix Theory
arXiv
收藏 引用
arXiv 2019年
作者: Shi, Xin Qiu, Robert Department of Electrical Engineering Center for Big Data and Artificial Intelligence State Energy Smart Grid Research and Development Center Shanghai Jiaotong University Shanghai200240 China Department of Electrical and Computer Engineering Tennessee Technological University CookevilleTN38505 United States
It is important for detecting the anomaly in power systems before it expands and causes serious faults such as power failures or system blackout. With the deployments of phasor measurement units (PMUs), massive amount... 详细信息
来源: 评论
Dimensionality Increment of PMU data for Anomaly Detection in Low Observability Power Systems
arXiv
收藏 引用
arXiv 2019年
作者: Shi, Xin Qiu, Robert Department of Electrical Engineering Center for Big Data and Artificial Intelligence State Energy Smart Grid Research and Development Center Shanghai Jiaotong University Shanghai200240 China Department of Electrical and Computer Engineering Tennessee Technological University CookevilleTN38505 United States
Anomaly detection is an important task in power systems. To make better use of the phasor measurement unit (PMU) data collected from a low observability power system for anomaly detection, a data dimensionality increm... 详细信息
来源: 评论
Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy
收藏 引用
Nano Research 2018年 第12期11卷 6316-6324页
作者: Xiaoyang Lin Zhizhong Si Wenzhi Fu Jianlei Yang Side Guo Yuan Cao Jin Zhang Xinhe Wang Peng Liu Kaili Jiang Weisheng Zhao Fert Beijing Research Institute School ofMicroelectronics & Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC)Beihang UniversityBeijing 100191China Beihang-GoertekJoint Microelectronics Institute Qingdao Research InstituteBeihang UniversityQingdao 266000China Fert Beijing Research Institute School of Computer Science and Engineering & Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC)Beihang UniversityBeijing 100191China State Key Laboratory of Low-Dimensional Quantum Physics Department of Physics & Tsinghua-Foxconn Nanotechnology Research CenterCollaborative Innovation Center of Quantum MatterTsinghua UniversityBeijing 100084China
Two-dimensional (2D) materials and their heterostructures, with wafer-scale synthesis methods and fascinating properties, have attracted significant interest and triggered revolutions in corresponding device applicati... 详细信息
来源: 评论
Exponentially Weighted Regularization Strategy in Constructing Reinforced Second-order Fuzzy Rule-based Model
arXiv
收藏 引用
arXiv 2020年
作者: Zhang, Congcong Oh, Sung-Kwun Pedrycz, Witold Fu, Zunwei Lu, Shanzhen Department of Computer University of Suwon San 2-2 Wau-ri Bongdam-eup Hwaseong-si Gyeonggi-do445-743 Korea Republic of Research Center for Big Data and Artificial Intelligence Linyi University Linyi276005 China School of Electrical & Electronic Engineering University of Suwon Hwaseong-si Gyeonggi-do18323 Korea Republic of Department of Electrical & Computer Engineering University of Alberta EdmontonT6R 2V4 AB Canada Department of Electrical and Computer Engineering Faculty of Engineering King Abdulaziz University Jeddah21589 Saudi Arabia Systems Research Institute Polish Academy of Sciences Warsaw Poland School of Mathematical Sciences Beijing Normal University Beijing100875 China
In the conventional Takagi-Sugeno-Kang (TSK)-type fuzzy models, constant or linear functions are usually utilized as the consequent parts of the fuzzy rules, but they cannot effectively describe the behavior within lo... 详细信息
来源: 评论
Learning continuous face age progression: A pyramid of GANs
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Hongyu Huang, Di Wang, Yunhong Jain, Anil K. Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Department of Computer Science and Engineering Michigan State University East LansingMI48824 United States
The two underlying requirements of face age progression, i.e. aging accuracy and identity permanence, are not well studied in the literature. This paper presents a novel generative adversarial network based approach t... 详细信息
来源: 评论