咨询与建议

限定检索结果

文献类型

  • 432 篇 期刊文献
  • 254 篇 会议

馆藏范围

  • 686 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 498 篇 工学
    • 364 篇 计算机科学与技术...
    • 306 篇 软件工程
    • 110 篇 信息与通信工程
    • 94 篇 生物医学工程(可授...
    • 94 篇 生物工程
    • 73 篇 电气工程
    • 61 篇 控制科学与工程
    • 55 篇 光学工程
    • 51 篇 电子科学与技术(可...
    • 32 篇 机械工程
    • 31 篇 仪器科学与技术
    • 23 篇 化学工程与技术
    • 21 篇 动力工程及工程热...
    • 20 篇 建筑学
    • 17 篇 土木工程
    • 14 篇 交通运输工程
  • 288 篇 理学
    • 121 篇 数学
    • 113 篇 生物学
    • 66 篇 物理学
    • 48 篇 统计学(可授理学、...
    • 27 篇 化学
    • 21 篇 系统科学
  • 144 篇 管理学
    • 83 篇 管理科学与工程(可...
    • 57 篇 图书情报与档案管...
    • 36 篇 工商管理
  • 82 篇 医学
    • 71 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
    • 27 篇 公共卫生与预防医...
  • 23 篇 法学
    • 17 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 7 篇 经济学
  • 4 篇 艺术学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 26 篇 deep learning
  • 19 篇 machine learning
  • 15 篇 big data
  • 13 篇 graph neural net...
  • 13 篇 artificial intel...
  • 11 篇 accuracy
  • 11 篇 data models
  • 11 篇 training
  • 9 篇 internet of thin...
  • 9 篇 optimization
  • 9 篇 feature extracti...
  • 9 篇 forecasting
  • 8 篇 predictive model...
  • 8 篇 semantics
  • 7 篇 reinforcement le...
  • 7 篇 image segmentati...
  • 7 篇 computational mo...
  • 7 篇 sentiment analys...
  • 7 篇 federated learni...
  • 6 篇 object detection

机构

  • 34 篇 beijing advanced...
  • 18 篇 national enginee...
  • 15 篇 department of co...
  • 15 篇 school of comput...
  • 14 篇 school of comput...
  • 12 篇 innovation cente...
  • 11 篇 innovation cente...
  • 11 篇 school of cyber ...
  • 10 篇 department of el...
  • 9 篇 the department o...
  • 8 篇 department of in...
  • 8 篇 big data researc...
  • 8 篇 university of ch...
  • 8 篇 school of scienc...
  • 8 篇 college of compu...
  • 8 篇 shenzhen researc...
  • 7 篇 the purple mount...
  • 7 篇 computer network...
  • 7 篇 national demonst...
  • 7 篇 department of el...

作者

  • 24 篇 jin hai
  • 21 篇 peng hao
  • 19 篇 hai jin
  • 18 篇 chien ting-ying
  • 15 篇 li jianxin
  • 15 篇 zhou pan
  • 13 篇 zhang rui
  • 13 篇 yu philip s.
  • 11 篇 yu liang-chih
  • 11 篇 wu tsu-yang
  • 11 篇 zeng yong
  • 10 篇 chen chien-ming
  • 10 篇 pan jeng-shyang
  • 10 篇 he lifang
  • 9 篇 ting hsien-wei
  • 9 篇 jin shi
  • 9 篇 qiu robert
  • 8 篇 lai k. robert
  • 8 篇 wang king-hang
  • 8 篇 li kang

语言

  • 627 篇 英文
  • 53 篇 其他
  • 7 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Big Data Experience Center and Department of Computer Engineering"
686 条 记 录,以下是601-610 订阅
排序:
SPT clusters with DES and HST weak lensing. II. Cosmological constraints from the abundance of massive halos
收藏 引用
Physical Review D 2024年 第8期110卷 083510页
作者: S. Bocquet S. Grandis L. E. Bleem M. Klein J. J. Mohr T. Schrabback T. M. C. Abbott P. A. R. Ade M. Aguena A. Alarcon S. Allam S. W. Allen O. Alves A. Amon A. J. Anderson J. Annis B. Ansarinejad J. E. Austermann S. Avila D. Bacon M. Bayliss J. A. Beall K. Bechtol M. R. Becker A. N. Bender B. A. Benson G. M. Bernstein S. Bhargava F. Bianchini M. Brodwin D. Brooks L. Bryant A. Campos R. E. A. Canning J. E. Carlstrom A. Carnero Rosell M. Carrasco Kind J. Carretero F. J. Castander R. Cawthon C. L. Chang C. Chang P. Chaubal R. Chen H. C. Chiang A. Choi T-L. Chou R. Citron C. Corbett Moran J. Cordero M. Costanzi T. M. Crawford A. T. Crites L. N. da Costa M. E. S. Pereira C. Davis T. M. Davis J. DeRose S. Desai T. de Haan H. T. Diehl M. A. Dobbs S. Dodelson C. Doux A. Drlica-Wagner K. Eckert J. Elvin-Poole S. Everett W. Everett I. Ferrero A. Ferté A. M. Flores J. Frieman J. Gallicchio J. García-Bellido M. Gatti E. M. George G. Giannini M. D. Gladders D. Gruen R. A. Gruendl N. Gupta G. Gutierrez N. W. Halverson I. Harrison W. G. Hartley K. Herner S. R. Hinton G. P. Holder D. L. Hollowood W. L. Holzapfel K. Honscheid J. D. Hrubes N. Huang J. Hubmayr E. M. Huff D. Huterer K. D. Irwin D. J. James M. Jarvis G. Khullar K. Kim L. Knox R. Kraft E. Krause K. Kuehn N. Kuropatkin F. Kéruzoré O. Lahav A. T. Lee P.-F. Leget D. Li H. Lin A. Lowitz N. MacCrann G. Mahler A. Mantz J. L. Marshall J. McCullough M. McDonald J. J. McMahon J. Mena-Fernández F. Menanteau S. S. Meyer R. Miquel J. Montgomery J. Myles T. Natoli A. Navarro-Alsina J. P. Nibarger G. I. Noble V. Novosad R. L. C. Ogando Y. Omori S. Padin S. Pandey P. Paschos S. Patil A. Pieres A. A. Plazas Malagón A. Porredon J. Prat C. Pryke M. Raveri C. L. Reichardt J. Roberson R. P. Rollins C. Romero A. Roodman J. E. Ruhl E. S. Rykoff B. R. Saliwanchik L. Salvati C. Sánchez E. Sanchez D. Sanchez Cid A. Saro K. K. Schaffer L. F. Secco I. Sevilla-Noarbe K. Sharon E. Sheldon T. Shin C. Sievers G. Smecher M. Smith T. Somboonpanyakul M. Sommer B. Stalder A. A. Stark J. Stephen V. Straz University Observatory Faculty of Physics Universität Innsbruck Institut für Astro- und Teilchenphysik Technikerstraße 25/8 6020 Innsbruck Austria High-Energy Physics Division Argonne National Laboratory 9700 South Cass Avenue Lemont Illinois 60439 USA Kavli Institute for Cosmological Physics University of Chicago 5640 South Ellis Avenue Chicago Illinois 60637 USA Max Planck Institute for Extraterrestrial Physics Gießenbachstraße 1 85748 Garching Germany Argelander-Institut für Astronomie Auf dem Hügel 71 53121 Bonn Germany Cerro Tololo Inter-American Observatory NSF’s National Optical-Infrared Astronomy Research Laboratory Casilla 603 La Serena Chile School of Physics and Astronomy Cardiff University Cardiff CF24 3YB United Kingdom Laboratório Interinstitucional de e-Astronomia—LIneA Rua Gal. José Cristino 77 Rio de Janeiro Rio de Janeiro—20921-400 Brazil Fermi National Accelerator Laboratory P. O. Box 500 Batavia Illinois 60510 USA Kavli Institute for Particle Astrophysics and Cosmology Stanford University 452 Lomita Mall Stanford California 94305 USA Department of Physics Stanford University 382 Via Pueblo Mall Stanford California 94305 USA SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park California 94025 USA Department of Physics University of Michigan Ann Arbor Michigan 48109 USA Institute of Astronomy University of Cambridge Madingley Road Cambridge CB3 0HA United Kingdom Kavli Institute for Cosmology University of Cambridge Madingley Road Cambridge CB3 0HA United Kingdom School of Physics University of Melbourne Parkville Victoria 3010 Australia NIST Quantum Devices Group 325 Broadway Mailcode 817.03 Boulder Colorado 80305 USA Department of Physics University of Colorado Boulder Colorado 80309 USA Institut de Física d’Altes Energies (IFAE) The Barcelona Institute of Science and Technology Campus UAB 08193 Bellaterra (Barcelona) Spain Institute of Cosmology and Gravitation University of Portsmouth Portsmouth
We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel’dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gra... 详细信息
来源: 评论
Corrigendum to “Promotion and resignation in employee networks” [Physica A 444 (2016) 442–447]
收藏 引用
Physica A: Statistical Mechanics and its Applications 2020年 555卷
作者: Jia Yuan Qian-Ming Zhang Jian Gao Linyan Zhang Xue-Song Wan Xiao-Jun Yu Tao Zhou Chengdu Institute of Public Administration Chengdu 610110 People’s Republic of China School of Management and Economics University of Electronic Science and Technology of China Chengdu 611731 People’s Republic of China CompleX Lab Web Sciences Center School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu 611731 People’s Republic of China Center for Polymer Studies Department of Physics Boston University Boston 02215 United States Hire Big Data (Chengdu) LTD. Chengdu 611731 People’s Republic of China Beijing Strong Union Technology Co. Ltd. Beijing 100086 People’s Republic of China Big Data Research Center University of Electronic Science and Technology of China Chengdu 611731 People’s Republic of China
来源: 评论
Refining word embeddings for sentiment analysis
Refining word embeddings for sentiment analysis
收藏 引用
2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
作者: Yu, Liang-Chih Wang, Jin Lai, K. Robert Zhang, Xuejie Department of Information Management Yuan Ze University Taiwan Department of Computer Science and Engineering Yuan Ze University Taiwan Innovation Center for Big Data and Digital Convergence Yuan Ze University Taiwan School of Information Science and Engineering Yunnan University Yunnan China
Word embeddings that can capture semantic and syntactic information from contexts have been extensively used for various natural language processing tasks. However, existing methods for learning context-based word emb... 详细信息
来源: 评论
Erratum for Wang et al., "Clinically Applicable System for Rapidly Predicting Enterococcus faecium Susceptibility to Vancomycin"
收藏 引用
Microbiology spectrum 2022年 第1期10卷 e0261021页
作者: Hsin-Yao Wang Chia-Ru Chung Chao-Jung Chen Ko-Pei Lu Yi-Ju Tseng Tzu-Hao Chang Min-Hsien Wu Wan-Ting Huang Ting-Wei Lin Tsui-Ping Liu Tzong-Yi Lee Jorng-Tzong Horng Jang-Jih Lu Department of Laboratory Medicine Chang Gung Memorial Hospitalgrid.413801.f at Linkou Taoyuan City Taiwan. Ph.D. Program in Biomedical Engineering Chang Gung Universitygrid.145695.a Taoyuan City Taiwan. Department of Computer Science and Information Engineering National Central Universitygrid.37589.30 Taoyuan City Taiwan. Graduate Institute of Integrated Medicine China Medical Universitygrid.254145.3 Taichung Taiwan. Proteomics Core Laboratory China Medical Universitygrid.254145.3 Hospital Taichung Taiwan. Graduate Program in Biomedical Information Yuan-Ze University Taoyuan City Taiwan. Department of Information Management Chang Gung Universitygrid.145695.a Taoyuan City Taiwan. Graduate Institute of Biomedical Informatics Taipei Medical University Taipei City Taiwan. Clinical Big Data Research Center Taipei Medical University Hospital Taipei City Taiwan. Graduate Institute of Biomedical Engineering Chang Gung Universitygrid.145695.a Taoyuan City Taiwan. Division of Haematology/Oncology Department of Internal Medicine Chang Gung Memorial Hospitalgrid.413801.f at Linkou Taoyuan City Taiwan. Biosensor Group Biomedical Engineering Research Center Chang Gung Universitygrid.145695.a Taoyuan City Taiwan. Department of Pathology Kaohsiung Chang Gung Memorial Hospitalgrid.413801.f and Chang Gung University College of Medicine Kaohsiung Taiwan. School of Life and Health Sciences The Chinese University of Hong Kong Shenzhen China. Warshel Institute for Computational Biology The Chinese University of Hong Kong Shenzhen China. Department of Bioinformatics and Medical Engineering Asia University Taichung City Taiwan. School of Medicine Chang Gung Universitygrid.145695.a Taoyuan City Taiwan. Department of Medical Biotechnology and Laboratory Science Chang Gung Universitygrid.145695.a Taoyuan City Taiwan.
来源: 评论
A Study of Vehicular Desynchronization for Platooning Application
A Study of Vehicular Desynchronization for Platooning Applic...
收藏 引用
2017 17th IEEE International Conference on Communication Technology (ICCT 2017)
作者: Visatouch Deeying Kiattikun Kawila Kulit Na Nakorn Kultida Rojviboonchai Chulalongkorn University Big Data Analytics and IoT Center (CUBIC) Department of Computer Engineering Faculty of Engineering Chulalongkorn University
Platooning is a challenging application because it requires a frequent rate of beaconing. Performance of traditional Carrier Sense Multiple Access with Collision Avoidance method(CSMA/CA) on IEEE 802.11 p is unable to... 详细信息
来源: 评论
Adversarial feature learning of online monitoring data for operational risk assessment in distribution networks
arXiv
收藏 引用
arXiv 2018年
作者: Shi, Xin Qiu, Robert Mi, Tiebin He, Xing Zhu, Yongli Department of Electrical Engineering Center for Big Data and Artificial Intelligence State Energy Smart Grid Research and Development Center Shanghai Jiaotong University Shanghai200240 China Department of Electrical and Computer Engineering Tennessee Technological University CookevilleTN38505 United States State Key Laboratory of Alternate Electrical Power Systems with Renewable Energy Sources North China Electric Power University Baoding071003 China
With the deployment of online monitoring systems in distribution networks, massive amounts of data collected through them contains rich information on the operating states of the networks. By leveraging the data, an u... 详细信息
来源: 评论
Driver Identification Using Histogram and Neural Network from Acceleration data
Driver Identification Using Histogram and Neural Network fro...
收藏 引用
2017 17th IEEE International Conference on Communication Technology (ICCT 2017)
作者: Nuttun Virojboonkiate Peerapon Vateekul Kultida Rojviboonchai Chulalongkorn University Big Data Analytics and IoT Center (CUBIC) Department of Computer Engineering Faculty of Engineering Chulalongkorn University
Sensor technology has continuously improved in term of size and cost. It encourages car companies to embed various types of sensors in their cars. The most common sensors that can be found are location sensor and acce... 详细信息
来源: 评论
YZU-NLP at EmoInt-2017: Determining emotion intensity using a bi-directional LSTM-CNN model  8
YZU-NLP at EmoInt-2017: Determining emotion intensity using ...
收藏 引用
8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, WASSA 2017, in conjunction with the Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
作者: He, Yuanye Yu, Liang-Chih Lai, K. Robert Liu, Weiyi Department of Information Management Yuan Ze University Taoyuan Taiwan Department of Computer Science and Engineering Yuan Ze University Taoyuan Taiwan Innovation Center for Big Data and Digital Convergence Yuan Ze University Taoyuan Taiwan School of Information Science and Engineering Yunnan University Kunming China
The EmoInt-2017 task aims to determine a continuous numerical value representing the intensity to which an emotion is expressed in a tweet. Compared to classification tasks that identify 1 among n emotions for a tweet...
来源: 评论
Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks
收藏 引用
Physical Review E 2018年 第2期97卷 022311-022311页
作者: Quan-Hui Liu Wei Wang Shi-Min Cai Ming Tang Ying-Cheng Lai Web Sciences Center School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu 611731 China Big Data Research Center University of Electronic Science and Technology of China Chengdu 611731 China Laboratory for the Modeling of Biological and Socio-technical Systems Northeastern University Boston Massachusetts 02115 USA College of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing 400065 China Center for Polymer Studies and Department of Physics Boston University Boston Massachusetts 02215 USA School of Information Science Technology East China Normal University Shanghai 200241 China School of Electrical Computer and Energy Engineering Arizona State University Tempe Arizona 85287 USA
Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a... 详细信息
来源: 评论
Advancing image understanding in poor visibility environments: A collective benchmark study
arXiv
收藏 引用
arXiv 2019年
作者: Yang, Wenhan Yuan, Ye Ren, Wenqi Liu, Jiaying Scheirer, Walter J. Wang, Zhangyang Zhang, Taiheng Zhong, Qiaoyong Xie, Di Pu, Shiliang Zheng, Yuqiang Qu, Yanyun Xie, Yuhong Chen, Liang Li, Zhonghao Hong, Chen Jiang, Hao Yang, Siyuan Liu, Yan Qu, Xiaochao Wan, Pengfei Zheng, Shuai Zhong, Minhui Su, Taiyi He, Lingzhi Guo, Yandong Zhao, Yao Zhu, Zhenfeng Liang, Jinxiu Wang, Jingwen Chen, Tianyi Quan, Yuhui Xu, Yong Liu, Bo Liu, Xin Sun, Qi Lin, Tingyu Li, Xiaochuan Lu, Feng Gu, Lin Zhou, Shengdi Cao, Cong Zhang, Shifeng Chi, Cheng Zhuang, Chubin Lei, Zhen Li, Stan Z. Wang, Shizheng Liu, Ruizhe Yi, Dong Zuo, Zheming Chi, Jianning Wang, Huan Wang, Kai Liu, Yixiu Gao, Xingyu Chen, Zhenyu Guo, Chang Li, Yongzhou Zhong, Huicai Huang, Jing Guo, Heng Yang, Jianfei Liao, Wenjuan Yang, Jiangang Zhou, Liguo Feng, Mingyue Qin, Likun Wangxuan Institute of Computer Technology Peking University Beijing100080 China Department of Computer Science and Engineering Texas A&M University TX77843 United States State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Department of Computer Science and Engineering University of Notre Dame Notre DameIN46556 United States Department of Mechanical Engineering Zhejiang University Hangzhou310027 China Hikvision Research Institute Hangzhou310051 China Mtlab Meitu Inc. Beijing100080 China Insitute of Information Science Beijing Jiaotong University Beijing100044 China Department of Computer Science and Technology Tongji University Shanghai201804 China XPENGMOTORS Beijing China School of Computer Science and Engineering at South China University of Technology Guangzhou510006 China Tencent AI Lab Shenzhen518000 China Institute of Automation Chinese Academy of Sciences Beijing100190 China Northeastern University Shenyang110819 China Nanyang Technological University Singapore639798 Big Data Center State Grid Corporation of China Beijing China Winsense Inc. Beijing100080 China University of Chinese Academy of Sciences Beijing100049 China Department of Informatics Technical University of Munich Garching85748 Germany Institute of Microelectronics Chinese Academy of Sciences Beijing100190 China China Electric Power Research Institute Beijing100031 China Westlake University Hangzhou310024 China Department of Computer Science Durham University Durham United Kingdom Australian National University ActonACT0200 Australia Sunway-AI Co. Ltd Zhuhai China Chinese Academy of Sciences R&D Center for Internet of Things Wuxi214200 China
Existing enhancement methods are empirically expected to help the high-level end computer vision task: however, that is observed to not always be the case in practice. We focus on object or face detection in poor visi... 详细信息
来源: 评论