咨询与建议

限定检索结果

文献类型

  • 626 篇 期刊文献
  • 549 篇 会议
  • 3 册 图书

馆藏范围

  • 1,178 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 777 篇 工学
    • 593 篇 计算机科学与技术...
    • 520 篇 软件工程
    • 189 篇 信息与通信工程
    • 129 篇 生物工程
    • 92 篇 生物医学工程(可授...
    • 91 篇 电气工程
    • 90 篇 控制科学与工程
    • 72 篇 光学工程
    • 64 篇 电子科学与技术(可...
    • 46 篇 化学工程与技术
    • 35 篇 机械工程
    • 29 篇 动力工程及工程热...
    • 24 篇 仪器科学与技术
    • 24 篇 建筑学
    • 22 篇 材料科学与工程(可...
    • 22 篇 安全科学与工程
  • 446 篇 理学
    • 229 篇 数学
    • 149 篇 生物学
    • 98 篇 统计学(可授理学、...
    • 73 篇 物理学
    • 57 篇 化学
    • 43 篇 系统科学
  • 238 篇 管理学
    • 142 篇 管理科学与工程(可...
    • 98 篇 图书情报与档案管...
    • 55 篇 工商管理
  • 87 篇 医学
    • 71 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 40 篇 药学(可授医学、理...
    • 31 篇 公共卫生与预防医...
  • 32 篇 法学
    • 24 篇 社会学
  • 20 篇 农学
  • 14 篇 经济学
  • 6 篇 教育学
  • 5 篇 军事学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 42 篇 feature extracti...
  • 38 篇 deep learning
  • 38 篇 training
  • 36 篇 semantics
  • 27 篇 computational mo...
  • 26 篇 accuracy
  • 25 篇 data models
  • 23 篇 machine learning
  • 23 篇 cloud computing
  • 22 篇 big data
  • 21 篇 predictive model...
  • 17 篇 convolution
  • 17 篇 security
  • 17 篇 federated learni...
  • 16 篇 visualization
  • 15 篇 task analysis
  • 15 篇 contrastive lear...
  • 15 篇 correlation
  • 15 篇 artificial intel...
  • 15 篇 adaptation model...

机构

  • 114 篇 college of compu...
  • 93 篇 national enginee...
  • 46 篇 school of big da...
  • 36 篇 school of big da...
  • 33 篇 college of compu...
  • 31 篇 college of big d...
  • 29 篇 college of compu...
  • 28 篇 key laboratory o...
  • 27 篇 shenzhen researc...
  • 23 篇 school of comput...
  • 22 篇 big data institu...
  • 22 篇 college of compu...
  • 19 篇 shenzhen institu...
  • 17 篇 shenzhen univers...
  • 16 篇 peng cheng labor...
  • 16 篇 college of compu...
  • 15 篇 guangdong provin...
  • 14 篇 school of comput...
  • 14 篇 state key labora...
  • 14 篇 college of compu...

作者

  • 34 篇 shen linlin
  • 16 篇 li jianqiang
  • 15 篇 huang joshua zhe...
  • 14 篇 shi qingjiang
  • 13 篇 linlin shen
  • 12 篇 xiuhua li
  • 12 篇 victor c. m. leu...
  • 12 篇 jianqiang li
  • 11 篇 li xiuhua
  • 11 篇 jie chen
  • 10 篇 gao can
  • 10 篇 pan jeng-shyang
  • 10 篇 leung victor c.m...
  • 10 篇 xiaofei wang
  • 10 篇 abduljabbar zaid...
  • 9 篇 zhong ming
  • 9 篇 tian chunwei
  • 9 篇 jian-tao zhou
  • 9 篇 lyu shen-huan
  • 8 篇 qilin fan

语言

  • 1,080 篇 英文
  • 89 篇 其他
  • 12 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Big Data Institute College of Computer Science and Software Engineering"
1178 条 记 录,以下是271-280 订阅
排序:
A Surrogate-Assisted Evolutionary Algorithm for Expensive Dynamic Multimodal Optimzation
A Surrogate-Assisted Evolutionary Algorithm for Expensive Dy...
收藏 引用
Congress on Evolutionary Computation
作者: Xunfeng Wu Songbai Liu Junkai Ji Lijia Ma Victor C. M. Leung College of Computer Science and Software Engineering Shenzhen University Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Electrical and Computer Engineering The University of British Columbia Vancouver Canada
Surrogate-assisted evolutionary algorithms (SAEAs) have demonstrated promising optimization performance in addressing expensive dynamic optimization problems or expensive multimodal optimization problems. However, non... 详细信息
来源: 评论
APSeg: Auto-Prompt Network for Cross-Domain Few-Shot Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: He, Weizhao Zhang, Yang Zhuo, Wei Shen, Linlin Yang, Jiaqi Deng, Songhe Sun, Liang Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China School of Computer Science University of Nottingham China
Few-shot semantic segmentation (FSS) endeavors to segment unseen classes with only a few labeled samples. Current FSS methods are commonly built on the assumption that their training and application scenarios share si... 详细信息
来源: 评论
Multi-Scale Dynamic and Hierarchical Relationship Modeling for Facial Action Units Recognition
Multi-Scale Dynamic and Hierarchical Relationship Modeling f...
收藏 引用
Conference on computer Vision and Pattern Recognition (CVPR)
作者: Zihan Wang Siyang Song Cheng Luo Songhe Deng Weicheng Xie Linlin Shen Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University Shenzhen Institute of Artificial Intelligence and Robotics for Society National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Universiry of Leicester Monash University
Human facial action units (AUs) are mutually related in a hierarchical manner, as not only they are associated with each other in both spatial and temporal domains but also AUs located in the same/close facial regions... 详细信息
来源: 评论
Enhancing Consistency in Container Migration via TEE: A Secure Architecture
Enhancing Consistency in Container Migration via TEE: A Secu...
收藏 引用
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
作者: Qingyu Gao Liantao Song Yan Lei Feng Wang Lei Wang Shize Zong Yan Ding College of Computer Science National University of Defense Technology Changsha China School of Big Data and Software Engineering Chongqing University Chongqing China College of Computer Science and Electronic Engineering Hunan University Changsha China National Innovation Institution of Defense Technology AMS China
Secure migration of multi-tenant containerized cloud servers is critical to maintaining the stability and security of cloud services. However, migrating applications across servers owned by different platforms introdu... 详细信息
来源: 评论
Graph-Augmented Contrastive Clustering for Time Series
SSRN
收藏 引用
SSRN 2023年
作者: Zhang, Qin Liang, Zhuoluo Ngueilbaye, Alladoumbaye Zhang, Peng Chen, Junyang Chen, Xiaojun Huang, Joshua Zhexue Big Data Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Cyberspace Institute of Advanced Technology Guangzhou University Guangzhou510006 China
The recent emergence of time series contrastive clustering methods can be broadly categorized into two classes. The first class uses contrastive learning to learn universal representations for time series. Though they... 详细信息
来源: 评论
Depth-Aware Multi-Modal Fusion for Generalized Zero-Shot Learning  22
Depth-Aware Multi-Modal Fusion for Generalized Zero-Shot Lea...
收藏 引用
22nd IEEE International Conference on Industrial Informatics, INDIN 2024
作者: Cao, Weipeng Yao, Xuyang Xu, Zhiwu Pan, Yinghui Sun, Yixuan Li, Dachuan Qiu, Bohua Wei, Muheng Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China College of Computer Science and Software Engineering Shenzhen University Shenzhen China Stony Brook University New York United States Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology Shenzhen China Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen China ZhenDui Industry Artificial Intelligence Co. Ltd Shenzhen China Department of Automation Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China
Realizing Generalized Zero-Shot Learning (GZSL) based on large models is emerging as a prevailing trend. However, most existing methods merely regard large models as black boxes, solely leveraging the features output ... 详细信息
来源: 评论
AD-Det: Boosting Object Detection in UAV Images with Focused Small Objects and Balanced Tail Classes
arXiv
收藏 引用
arXiv 2025年
作者: Li, Zhenteng Lian, Sheng Pan, Dengfeng Wang, Youlin Liu, Wei College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350002 China School of Software East China Jiaotong University Nanchang330013 China
Object detection in Unmanned Aerial Vehicle (UAV) images poses significant challenges due to complex scale variations and class imbalance among objects. Existing methods often address these challenges separately, over... 详细信息
来源: 评论
Fingerprint Presentation Attack Detector Using Global-Local Model
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Haozhe Zhang, Wentian Liu, Feng Wu, Haoqian Shen, Linlin The Computer Vision Institute College of Computer Science and Software Engineering SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society The National Engineering Laboratory for Big Data System Computing Technology The Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China
The vulnerability of automated fingerprint recognition systems (AFRSs) to presentation attacks (PAs) promotes the vigorous development of PA detection (PAD) technology. However, PAD methods have been limited by inform... 详细信息
来源: 评论
Autonomous Emergency Landing on 3D Terrains: Approaches for Monocular Vision-based UAVs
Autonomous Emergency Landing on 3D Terrains: Approaches for ...
收藏 引用
International Conference on Advanced Robotics and Mechatronics (ICARM)
作者: Weiming Du Junmou Lin Binqing Du Uddin Md. Borhan Jianqiang Li Jie Chen College of Computer Science and Software Engineering Shenzhen University Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China
With the increasing use of unmanned aerial vehicles (UAVs) in a variety of applications, their safety has become a critical concern. UAVs face numerous emergencies during missions, in these situations, the UAVs need t...
来源: 评论
Graph-Augmented Contrastive Clustering for Time Series data
SSRN
收藏 引用
SSRN 2024年
作者: Zhang, Qin Liang, Zhuoluo Ngueilbaye, Alladoumbaye Liu, Han Zhou, Hong Huang, Joshua Zhexue College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Guangzhou University China
The recent emergence of time series contrastive clustering methods can be categorized into two classes. The first class uses contrastive learning for universal representations, which can be effective in various downst... 详细信息
来源: 评论