咨询与建议

限定检索结果

文献类型

  • 629 篇 期刊文献
  • 549 篇 会议
  • 3 册 图书

馆藏范围

  • 1,181 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 780 篇 工学
    • 595 篇 计算机科学与技术...
    • 522 篇 软件工程
    • 189 篇 信息与通信工程
    • 129 篇 生物工程
    • 94 篇 电气工程
    • 92 篇 生物医学工程(可授...
    • 91 篇 控制科学与工程
    • 72 篇 光学工程
    • 64 篇 电子科学与技术(可...
    • 46 篇 化学工程与技术
    • 35 篇 机械工程
    • 29 篇 动力工程及工程热...
    • 24 篇 仪器科学与技术
    • 23 篇 建筑学
    • 22 篇 材料科学与工程(可...
    • 22 篇 安全科学与工程
  • 447 篇 理学
    • 231 篇 数学
    • 149 篇 生物学
    • 99 篇 统计学(可授理学、...
    • 73 篇 物理学
    • 57 篇 化学
    • 43 篇 系统科学
  • 237 篇 管理学
    • 142 篇 管理科学与工程(可...
    • 98 篇 图书情报与档案管...
    • 55 篇 工商管理
  • 87 篇 医学
    • 71 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 40 篇 药学(可授医学、理...
    • 31 篇 公共卫生与预防医...
  • 33 篇 法学
    • 24 篇 社会学
  • 21 篇 农学
  • 14 篇 经济学
  • 6 篇 教育学
  • 5 篇 军事学
  • 2 篇 文学
  • 1 篇 艺术学

主题

  • 42 篇 feature extracti...
  • 38 篇 deep learning
  • 38 篇 training
  • 36 篇 semantics
  • 27 篇 computational mo...
  • 26 篇 accuracy
  • 25 篇 data models
  • 23 篇 machine learning
  • 23 篇 cloud computing
  • 22 篇 big data
  • 21 篇 predictive model...
  • 17 篇 convolution
  • 17 篇 security
  • 17 篇 federated learni...
  • 16 篇 visualization
  • 15 篇 task analysis
  • 15 篇 contrastive lear...
  • 15 篇 correlation
  • 15 篇 artificial intel...
  • 15 篇 adaptation model...

机构

  • 114 篇 college of compu...
  • 93 篇 national enginee...
  • 46 篇 school of big da...
  • 36 篇 school of big da...
  • 33 篇 college of compu...
  • 31 篇 college of big d...
  • 29 篇 college of compu...
  • 28 篇 key laboratory o...
  • 27 篇 shenzhen researc...
  • 23 篇 school of comput...
  • 22 篇 big data institu...
  • 22 篇 college of compu...
  • 19 篇 shenzhen institu...
  • 17 篇 shenzhen univers...
  • 16 篇 peng cheng labor...
  • 16 篇 college of compu...
  • 15 篇 guangdong provin...
  • 14 篇 school of comput...
  • 14 篇 state key labora...
  • 14 篇 college of compu...

作者

  • 34 篇 shen linlin
  • 16 篇 li jianqiang
  • 15 篇 huang joshua zhe...
  • 14 篇 shi qingjiang
  • 13 篇 linlin shen
  • 12 篇 xiuhua li
  • 12 篇 victor c. m. leu...
  • 12 篇 jianqiang li
  • 11 篇 li xiuhua
  • 11 篇 jie chen
  • 10 篇 gao can
  • 10 篇 pan jeng-shyang
  • 10 篇 leung victor c.m...
  • 10 篇 xiaofei wang
  • 10 篇 abduljabbar zaid...
  • 9 篇 zhong ming
  • 9 篇 tian chunwei
  • 9 篇 jian-tao zhou
  • 9 篇 lyu shen-huan
  • 8 篇 qilin fan

语言

  • 1,082 篇 英文
  • 90 篇 其他
  • 12 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Big Data Institute College of Computer Science and Software Engineering"
1181 条 记 录,以下是71-80 订阅
排序:
FedDGL: Federated Dynamic Graph Learning for Temporal Evolution and data Heterogeneity  16
FedDGL: Federated Dynamic Graph Learning for Temporal Evolut...
收藏 引用
16th Asian Conference on Machine Learning, ACML 2024
作者: Xie, Zaipeng Li, Likun Chen, Xiangbin Yu, Hao Huang, Qian Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University Nanjing China College of Computer Science and Software Engineering Hohai University Nanjing China College of Artificial Intelligence and Automation Hohai University Nanjing China
Federated graph learning enhances federated learning by enabling privacy-preserving collaborative training on distributed graph data. While traditional methods are effective in managing data heterogeneity, they typica... 详细信息
来源: 评论
Privacy-Preserving Multi-Keyword Fuzzy Adjacency Search Strategy for Encrypted Graph in Cloud Environment
收藏 引用
computers, Materials & Continua 2024年 第3期78卷 3177-3194页
作者: Bin Wu Xianyi Chen Jinzhou Huang Caicai Zhang Jing Wang Jing Yu Zhiqiang Zhao Zhuolin Mei School of Computer and Big Data Science Jiujiang UniversityJiujiang332005China Jiujiang Key Laboratory of Network and Information Security Jiujiang332005China School of Computer and Software Nanjing University of Information Science&TechnologyNanjing210044China School of Computer Engineering Hubei University of Arts and ScienceXiangyang441053China School of Modern Information Technology Zhejiang Institute of Mechanical and Electrical EngineeringHangzhou310053China Information Center Jiangxi Changjiang Chemical Co.Ltd.Jiujiang332005China School of Mathematics and Computer Science Ningxia Normal UniversityGuyuan756099China
In a cloud environment,outsourced graph data is widely used in companies,enterprises,medical institutions,and so *** owners and users can save costs and improve efficiency by storing large amounts of graph data on clo... 详细信息
来源: 评论
PERIODICITY DECOUPLING FRAMEWORK FOR LONG-TERM SERIES FORECASTING  12
PERIODICITY DECOUPLING FRAMEWORK FOR LONG-TERM SERIES FORECA...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Dai, Tao Wu, Beiliang Liu, Peiyuan Li, Naiqi Bao, Jigang Jiang, Yong Xia, Shu-Tao College of Computer Science and Software Engineering Shenzhen University China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China WeBank Institute of Financial Technology Shenzhen University China
Convolutional neural network (CNN)-based and Transformer-based methods have recently made significant strides in time series forecasting, which excel at modeling local temporal variations or capturing long-term depend... 详细信息
来源: 评论
MLRP-KG: Mine Landslide Risk Prediction Based on Knowledge Graph
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2022年 第1期3卷 78-87页
作者: Ma, Lianbo Wang, Jingwei Cheng, Jian Wang, Xingwei Zhu, Wancheng Northeastern University Shenyang China College of Software Northeastern University Shenyang China Research Institute of Mine Big Data China Coal Research Institute Beijing China College of Computer Science and Engineering Northeastern University Shenyang China School of Resource and Civil Engineering Northeastern University Shenyang China
The mine landslide risk prediction is a fundamental task for the safety management of the digital mining system, which is dependent on the analysis of the open pit mine exploitation slope stability. Such stability ana... 详细信息
来源: 评论
Evolutionary Multiobjective Feature Selection Assisted by Unselected Features  13
Evolutionary Multiobjective Feature Selection Assisted by Un...
收藏 引用
13th IEEE Congress on Evolutionary Computation, CEC 2024
作者: Duan, Xuan Liu, Songbai Ji, Junkai Li, Lingjie Lin, Qiuzhen Tan, Kay Chen College of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen China Shenzhen China The Hong Kong Polytechnic University Department of Computing Hong Kong
To enhance the generalization of multi-objective feature selection (MOFS) in classification, this paper proposes an evolutionary multitasking algorithm, diverging from previous approaches that exclusively target selec... 详细信息
来源: 评论
SAM-MIL: A Spatial Contextual Aware Multiple Instance Learning Approach for Whole Slide Image Classification  24
SAM-MIL: A Spatial Contextual Aware Multiple Instance Learni...
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Fang, Heng Huang, Sheng Tang, Wenhao Huangfu, Luwen Liu, Bo School of Big Data & Software Engineering Chongqing University Chongqing China Fowler College of Business San Diego State University San DiegoCA United States School of Computer Science and Information Engineering Hefei University of Technology Hefei China
Multiple Instance Learning (MIL) represents the predominant framework in Whole Slide Image (WSI) classification, covering aspects such as sub-typing, diagnosis, and beyond. Current MIL models predominantly rely on ins... 详细信息
来源: 评论
HairDiffusion: Vivid Multi-Colored Hair Editing via Latent Diffusion  38
HairDiffusion: Vivid Multi-Colored Hair Editing via Latent D...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zeng, Yu Zhang, Yang Liu, Jiachen Shen, Linlin Deng, Kaijun He, Weizhao Wang, Jinbao Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University China Shenzhen Institute of Artificial Intelligence and Robotics for Society China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Guangdong Provincial Key Laboratory of Intelligent Information Processing China
Hair editing is a critical image synthesis task that aims to edit hair color and hairstyle using text descriptions or reference images, while preserving irrelevant attributes (e.g., identity, background, cloth). Many ...
来源: 评论
FLEKE: Federated Locate-then-Edit Knowledge Editing
arXiv
收藏 引用
arXiv 2025年
作者: Zhao, Zongkai Xu, Guozeng Li, Xiuhua Wei, Kaiwen Zhong, Jiang School of Big Data & Software Engineering Chongqing University China College of Computer Science Chongqing University China
Locate-then-Edit Knowledge Editing (LEKE) is a key technique for updating large language models (LLMs) without full retraining. However, existing methods assume a single-user setting and become inefficient in real-wor... 详细信息
来源: 评论
RSP-gcForest: A Distributed Deep Forest via Random Sample Partition
RSP-gcForest: A Distributed Deep Forest via Random Sample Pa...
收藏 引用
2023 IEEE International Conference on big data, bigdata 2023
作者: Li, Mark Junjie Cai, Wenzhu Lin, Yigang Huang, Sunjie Huang, Joshua Zhexue Peng, Patrick Xiaogang Shenzhen University College of Computer Science and Software Engineering Shenzhen China Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen China Shenzhen Academy of Inspection and Quarantine China
Deep Forest, a powerful alternative to deep neural networks, has gained much attention due to its advantages, such as low complexity, minimal hyperparameter requirements, and strong application performance. In the cur... 详细信息
来源: 评论
Multi-layer network embedding on scc-based network with motif
收藏 引用
Digital Communications and Networks 2024年 第3期10卷 546-556页
作者: Lu Sun Xiaona Li Mingyue Zhang Liangtian Wan Yun Lin Xianpeng Wang Gang Xu Department of Communication Engineering Institute of Information Science TechnologyDalian Maritime UniversityDalian116026China Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and TelecommunicationsChongqing400065China Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province DUT School of Software Technology&DUT-RU International School of Information Science and EngineeringDalian University of TechnologyDalian 116620China College of Information and Communication Engineering Harbin Engineering UniversityHarbin 150001China School of Information and Communication Engineering Hainan UniversityHaikou 570228China State Key Laboratory of Millimeter Waves School of Information Science and EngineeringSoutheast UniversityNanjing 210096China
Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new *** is a challenging task to accurately detect,extract,and represent semantic... 详细信息
来源: 评论