咨询与建议

限定检索结果

文献类型

  • 365 篇 期刊文献
  • 286 篇 会议
  • 7 册 图书

馆藏范围

  • 658 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 439 篇 工学
    • 352 篇 计算机科学与技术...
    • 299 篇 软件工程
    • 90 篇 生物工程
    • 80 篇 信息与通信工程
    • 77 篇 生物医学工程(可授...
    • 65 篇 光学工程
    • 59 篇 控制科学与工程
    • 42 篇 电气工程
    • 24 篇 电子科学与技术(可...
    • 21 篇 机械工程
    • 18 篇 安全科学与工程
    • 13 篇 建筑学
    • 13 篇 土木工程
    • 13 篇 化学工程与技术
    • 13 篇 交通运输工程
  • 238 篇 理学
    • 115 篇 数学
    • 102 篇 生物学
    • 56 篇 物理学
    • 31 篇 统计学(可授理学、...
    • 18 篇 系统科学
    • 16 篇 化学
  • 130 篇 管理学
    • 74 篇 管理科学与工程(可...
    • 61 篇 图书情报与档案管...
    • 37 篇 工商管理
  • 73 篇 医学
    • 65 篇 临床医学
    • 61 篇 基础医学(可授医学...
    • 37 篇 药学(可授医学、理...
    • 29 篇 公共卫生与预防医...
  • 16 篇 经济学
    • 16 篇 应用经济学
  • 16 篇 法学
    • 15 篇 社会学
  • 9 篇 农学
  • 8 篇 教育学
  • 2 篇 艺术学

主题

  • 27 篇 deep learning
  • 26 篇 accuracy
  • 22 篇 machine learning
  • 22 篇 training
  • 19 篇 semantics
  • 17 篇 computational mo...
  • 17 篇 feature extracti...
  • 14 篇 image segmentati...
  • 14 篇 federated learni...
  • 14 篇 data models
  • 14 篇 convolutional ne...
  • 13 篇 optimization
  • 11 篇 reinforcement le...
  • 11 篇 predictive model...
  • 11 篇 artificial intel...
  • 9 篇 object detection
  • 9 篇 transformers
  • 9 篇 graph neural net...
  • 9 篇 real-time system...
  • 9 篇 decision making

机构

  • 35 篇 college of compu...
  • 18 篇 school of big da...
  • 17 篇 national enginee...
  • 16 篇 department of co...
  • 12 篇 shenzhen researc...
  • 10 篇 university of sc...
  • 9 篇 college of compu...
  • 9 篇 school of comput...
  • 9 篇 university of ch...
  • 9 篇 state key labora...
  • 9 篇 artificial intel...
  • 9 篇 school of big da...
  • 8 篇 national enginee...
  • 8 篇 college of intel...
  • 8 篇 iconix software ...
  • 8 篇 college of compu...
  • 7 篇 institute of art...
  • 7 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 moe key lab of a...

作者

  • 12 篇 seifedine kadry
  • 12 篇 xiaofei wang
  • 12 篇 jin hai
  • 11 篇 victor c. m. leu...
  • 11 篇 xiong hui
  • 10 篇 xiuhua li
  • 10 篇 leung victor c. ...
  • 8 篇 wang shuai
  • 8 篇 jungeun kim
  • 8 篇 r. saravanakumar
  • 7 篇 niyato dusit
  • 7 篇 qilin fan
  • 7 篇 timofte radu
  • 7 篇 shuai wang
  • 7 篇 gao can
  • 7 篇 hai jin
  • 6 篇 wang xiaofei
  • 6 篇 tian chunwei
  • 6 篇 zou deqing
  • 6 篇 wang yan

语言

  • 575 篇 英文
  • 80 篇 其他
  • 3 篇 中文
检索条件"机构=Big Data Intelligence Lab Department of Computer Science and Software Engineering"
658 条 记 录,以下是551-560 订阅
排序:
Scalability Evaluation of big data Processing Services in Clouds  1st
Scalability Evaluation of Big Data Processing Services in Cl...
收藏 引用
1st International Symposium on Benchmarking, Measuring, and Optimization, Bench 2018
作者: Zhou, Xin Jiang, Congfeng Qiu, Yeliang Fan, Tiantian Wang, Yumei Zhang, Liangbin Wan, Jian Shi, Weisong Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education Hangzhou Dianzi University Hangzhou310037 China School of Computer Science and Technology Hangzhou Dianzi University Hangzhou310037 China College of Big Data and Software Engineering Zhejiang Wanli University Ningbo China School of Information and Electronic Engineering Zhejiang University of Science and Technology Hangzhou310023 China Department of Computer Science Wayne State University DetroitMI48202 United States
Currently, many cloud providers deploy their big data processing systems as cloud services, which helps users conveniently manage and process their data in clouds. Among different service providers’ big data processi... 详细信息
来源: 评论
Power Characterization of Memory Intensive Applications: Analysis and Implications  1st
Power Characterization of Memory Intensive Applications: Ana...
收藏 引用
1st International Symposium on Benchmarking, Measuring, and Optimization, Bench 2018
作者: Qiu, Yeliang Jiang, Congfeng Fan, Tiantian Wang, Yumei Zhang, Liangbin Wan, Jian Shi, Weisong Key Laboratory of Complex Systems Modeling and Simulation Ministry of Education Hangzhou Dianzi University Hangzhou310037 China School of Computer Science and Technology Hangzhou Dianzi University Hangzhou310037 China College of Big Data and Software Engineering Zhejiang Wanli University Ningbo China School of Information and Electronic Engineering Zhejiang University of Science and Technology Hangzhou310023 China Department of Computer Science Wayne State University DetroitMI48202 United States
DRAM is a significant source of server power consumption especially when the server runs memory intensive applications. Current power aware scheduling assumes that DRAM is as energy proportional as other components. H... 详细信息
来源: 评论
NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results
arXiv
收藏 引用
arXiv 2022年
作者: Li, Yawei Zhang, Kai Timofte, Radu Van Gool, Luc Kong, Fangyuan Li, Mingxi Liu, Songwei Du, Zongcai Liu, Ding Zhou, Chenhui Chen, Jingyi Han, Qingrui Li, Zheyuan Liu, Yingqi Chen, Xiangyu Cai, Haoming Qiao, Yu Dong, Chao Sun, Long Pan, Jinshan Zhu, Yi Zong, Zhikai Liu, Xiaoxiao Hui, Zheng Yang, Tao Ren, Peiran Xie, Xuansong Hua, Xian-Sheng Wang, Yanbo Ji, Xiaozhong Lin, Chuming Luo, Donghao Tai, Ying Wang, Chengjie Zhang, Zhizhong Xie, Yuan Cheng, Shen Luo, Ziwei Yu, Lei Wen, Zhihong Wu, Qi Li, Youwei Fan, Haoqiang Sun, Jian Liu, Shuaicheng Huang, Yuanfei Jin, Meiguang Huang, Hua Liu, Jing Zhang, Xinjian Wang, Yan Long, Lingshun Li, Gen Zhang, Yuanfan Cao, Zuowei Sun, Lei Alexander, Panaetov Wang, Yucong Cai, Minjie Wang, Li Tian, Lu Wang, Zheyuan Ma, Hongbing Liu, Jie Chen, Chao Cai, Yidong Tang, Jie Wu, Gangshan Wang, Weiran Huang, Shirui Lu, Honglei Liu, Huan Wang, Keyan Chen, Jun Chen, Shi Miao, Yuchun Huang, Zimo Zhang, Lefei Ayazoglu, Mustafa Xiong, Wei Xiong, Chengyi Wang, Fei Li, Hao Wen, Ruimian Yang, Zhijing Zou, Wenbin Zheng, Weixin Ye, Tian Zhang, Yuncheng Kong, Xiangzhen Arora, Aditya Zamir, Syed Waqas Khan, Salman Hayat, Munawar Khan, Fahad Shahbaz Gao, Dandan Zhou, Dengwen Ning, Qian Tang, Jingzhu Huang, Han Wang, Yufei Peng, Zhangheng Li, Haobo Guan, Wenxue Gong, Shenghua Li, Xin Liu, Jun Wang, Wanjun Zeng, Kun Lin, Hanjiang Chen, Xinyu Fang, Jinsheng Zhang, Shuhao Zhang, Yuhao Sinha, Abhishek Kumar Moorthi, S. Manthira Dhar, Debajyoti Yang, Hao-Hsiang Huang, Zhi-Kai Chen, Wei-Ting Chang, Hua-En Kuo, Sy-Yen Tan, Wei Chen, Hao Xu, Qian Narang, Pratik Singh, Usneek Sameen, Syed Khaitan, Harsh Yinghua, Liu Tianlin, Zhang Xiaoming, Zhang Meng, Dingxuan Tian, Chunwei Morshed, Mashrur M. Ahsan, Ahmad Omar Computer Vision Lab ETH Zurich Switzerland University of Würzburg Germany ByteDance Shenzhen China State Key Laboratory for Novel Software Technology Nanjing University China ByteDance Inc China NetEase Inc. China Shenzhen Institutes of Advanced Technology CAS China University of Macau China Shanghai AI Lab Shanghai China Nanjing University of Science and Technology China Amazon Web Services United States China Alibaba DAMO Academy EFC Yuhang District Zhejiang Hangzhou China East China Normal University China Youtu Lab Tencent China Megvii Technology China University of Electronic Science and Technology of China China School of Artificial Intelligence Beijing Normal University China Alibaba Group China Bilibili AI China Nankai-Baidu Joint Lab Nankai University Tianjin China Platform Technologies Tencent Online Video China Higher School of Economics Russia Huawei Moscow Research Center Russia Hunan University China Xidian University China Xilinx Technology Beijing Limited China College of Information Science and Engineering Xinjiang University Urumqi China Department of Electronic Engineering Tsinghua University Beijing China Nanjing University China McMaster University Canada School of Telecommunication Engineering Xidian University Xi’an China School of Computer Science Wuhan University Wuhan China School of Mathematical Science University of Electronic Science and Technology of China Chengdu China School of Computer Science The University of Sydney Sydney Australia Aselsan Research Ankara Turkey School of Electronic and Information Engineering South-Central University for Nationalities Wuhan China Guangdong University of Technology China Fujian Normal University Fuzhou University Jimei University China Design Group China Abu Dhabi United Arab Emirates Monash University Melbourne Australia Mohamed bin Zayed University of AI United Arab Emirates North China Electric Power University Changping District Beijing China The School of Art
This paper reviews the NTIRE 2022 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The task of the challenge was to super-resolve an input image with a magnificati... 详细信息
来源: 评论
NTIRE 2022 Challenge on Stereo Image Super-Resolution: Methods and Results
arXiv
收藏 引用
arXiv 2022年
作者: Guo, Yulan Wang, Longguang Wang, Yingqian Li, Juncheng Gu, Shuhang Timofte, Radu Chen, Liangyu Chu, Xiaojie Yu, Wenqing Jin, Kai Wei, Zeqiang Guo, Sha Yang, Angulia Zhou, Xiuzhuang Guo, Guodong Xiao, Huaxin Yan, Shen Liu, Yuxiang Cai, Hanxiao Dai, Bin Peng, Feiyue Cao, Pu Nie, Yang Yang, Lu Song, Qing Hu, Xiaotao Xu, Jun Xu, Mai Jing, Junpeng Deng, Xin Xing, Qunliang Qiao, Minglang Guan, Zhenyu Guo, Wenlong Peng, Chenxu Chen, Zan Chen, Junyang Li, Hao Chen, Junbin Li, Weijie Yang, Zhijing Li, Gen Li, Aijin Sun, Lei Zhang, Dafeng Liu, Shizhuo Zhang, Jiangtao Qu, Yanyun Yang, Hao-Hsiang Huang, Zhi-Kai Chen, Wei-Ting Chang, Hua-En Kuo, Sy-Yen Liang, Qiaohui Lin, Jianxin Wang, Yijun Yin, Lianying Zhang, Rongju Zhao, Wei Xiao, Peng Xu, Rongjian Zhang, Zhilu Zuo, Wangmeng Guo, Hansheng Gao, Guangwei Zeng, Tieyong Kim, Joohyeok Kim, HyeonA Park, Eunpil Sim, Jae-Young Pi, Huicheng Zhang, Shunli Zhai, Jucai Zeng, Pengcheng Liu, Yang Ma, Chihao Huang, Yulin Chen, Junying National University of Defense Technology China The Chinese University of Hong Kong Hong Kong The University of Sydney Australia University of Würzburg ETH Zürich Switzerland MEGVII Technology China Peking University China Bigo Technology Pte. Ltd Singapore Smart Healthcare Innovation Lab Beijing University of Posts and Telecommunications China School of Artificial Intelligence Beijing University of Posts and Telecommunications China Head of Institute of Deep Learning Baidu Research College of Systems Engineering National University of Defense Technology China College of Liberal Arts and Sciences National University of Defense Technology China Pattern Recognition and Intelligent Vision Lab Beijing University of Posts and Telecommunications China College of Computer Science Nankai University Tianjin China School of Statistics and Data Science Nankai University Tianjin Singapore Beihang University China Zhejiang University of Technology China Guangdong University of Technology China Tencent OVBU SRC-B Xiamen University China Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Electronics Engineering National Taiwan University Taiwan College of Computer Science and Electronic Engineering Hunan University China Harbin Institude of Technology China The Chinese University of Hong Kong Hong Kong Nanjing University of Posts and Telecommunications China Department of Electrical Engineering Ulsan National Institute of Science and Technology Korea Republic of Graduate School of Artificial Intelligence Ulsan National Institute of Science and Technology Korea Republic of Beijing Jiaotong University China City University of Hong Kong Hong Kong South China University of Technology China
In this paper, we summarize the 1st NTIRE challenge on stereo image super-resolution (restoration of rich details in a pair of low-resolution stereo images) with a focus on new solutions and results. This challenge ha... 详细信息
来源: 评论
Lessons Learned from Assessing Trustworthy AI in Practice
收藏 引用
Digital Society 2023年 第3期2卷 1-25页
作者: Vetter, Dennis Amann, Julia Bruneault, Frédérick Coffee, Megan Düdder, Boris Gallucci, Alessio Gilbert, Thomas Krendl Hagendorff, Thilo van Halem, Irmhild Hickman, Eleanore Hildt, Elisabeth Holm, Sune Kararigas, Georgios Kringen, Pedro Madai, Vince I. Wiinblad Mathez, Emilie Tithi, Jesmin Jahan Westerlund, Magnus Wurth, Renee Zicari, Roberto V. Computational Vision and Artificial Intelligence Lab Goethe University Frankfurt Frankfurt Am Main Germany Z-Inspection® Initiative Venice Italy Health Ethics and Policy Lab ETH Zurich Zurich Switzerland Strategy and Innovation Careum Foundation Zurich Switzerland Philosophie Departement Collège André-Laurendeau Montréal Canada École Des Médias Université du Québec À Montréal Montréal Canada Department of Medicine Division of Infectious Diseases and Immunology New York University Grossman School of Medicine New York City USA Department of Computer Science University of Copenhagen Copenhagen Denmark Digital Life Initiative Cornell Tech New York City USA Cluster of Excellence “Machine Learning: New Perspectives for Science” University of Tuebingen Tuebingen Germany School of Law University of Bristol Bristol UK Center for the Study of Ethics in the Professions Illinois Institute of Technology Chicago USA Department of Business Management and Analytics Arcada University of Applied Sciences Helsinki Finland Department of Food & Resource Economics University of Copenhagen Copenhagen Denmark Department of Physiology Faculty of Medicine University of Iceland Reykjavik Iceland QUEST Centre for Responsible Research Berlin Institute of Health Charité Universitätsmedizin Berlin Berlin Germany Faculty of Computing Engineering and the Built Environment School of Computing and Digital Technology Birmingham City University Birmingham UK Parallel Computing Labs Intel Santa Clara USA School of Economics Innovation and Technology Kristiania University College Oslo Norway Data Science Graduate School Seoul National University Seoul South Korea
Building artificial intelligence (AI) systems that adhere to ethical standards is a complex problem. Even though a multitude of guidelines for the design and development of such trustworthy AI systems exist, these gui...
来源: 评论
The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions
arXiv
收藏 引用
arXiv 2023年
作者: Ma, Jun Xie, Ronald Ayyadhury, Shamini Ge, Cheng Gupta, Anubha Gupta, Ritu Gu, Song Zhang, Yao Lee, Gihun Kim, Joonkee Lou, Wei Li, Haofeng Upschulte, Eric Dickscheid, Timo de Almeida, José Guilherme Wang, Yixin Han, Lin Yang, Xin labagnara, Marco Gligorovski, Vojislav Scheder, Maxime Rahi, Sahand Jamal Kempster, Carly Pollitt, Alice Espinosa, Leon Mignot, Tâm Middeke, Jan Moritz Eckardt, Jan-Niklas Li, Wangkai Li, Zhaoyang Cai, Xiaochen Bai, Bizhe Greenwald, Noah F. Van Valen, David Weisbart, Erin Cimini, Beth A. Cheung, Trevor Brück, Oscar Bader, Gary D. Wang, Bo Peter Munk Cardiac Centre University Health Network TorontoON Canada Department of Laboratory Medicine and Pathobiology University of Toronto TorontoON Canada Vector Institute TorontoON Canada Department of Molecular Genetics University of Toronto TorontoON Canada Donnelly Centre University of Toronto TorontoON Canada Princess Margaret Cancer Centre University Health Network TorontoON Canada School of Medicine and Pharmacy Ocean University of China Qingdao China New Delhi India Laboratory Oncology Dr. BRA-IRCH All India Institute of Medical Sciences New Delhi India Department of Image Reconstruction Nanjing Anke Medical Technology Co. Ltd. Nanjing China Shanghai Artificial Intelligence Laboratory Shanghai China Graduate School of AI KAIST Seoul Korea Republic of Shenzhen Research Institute of Big Data Shenzhen China Shenzhen China Helmholtz AI Research Center Jülich Jülich Germany Faculty of Mathematics and Natural Sciences Institute of Computer Science Heinrich Heine University Düsseldorf Düsseldorf Germany Hinxton United Kingdom Champalimaud Foundation - Centre for the Unknown Lisbon Portugal Department of Bioengineering Stanford University Palo AltoCA United States Tandon School of Engineering New York University New YorkNY United States School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China Lausanne Switzerland School of Biological Sciences University of Reading Reading United Kingdom Laboratoire de Chimie Bactérienne CNRS Université Aix Marseille UMR Institut de Microbiologie de la Méditerranée Marseille France Department of Internal Medicine I University Hospital Dresden Technical University Dresden Dresden Germany Else Kroener Fresenius Center for Digital Health Technical University Dresden Dresden Germany Department of Automation University of Science and Technology of China Hefei China Institute of Advanced Technology University of Science and Technology of China Hefei Chi
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify ... 详细信息
来源: 评论
lMFF: Efficient and Scalable layered Materials Force Field on Heterogeneous Many-Core Processors
lMFF: Efficient and Scalable layered Materials Force Field o...
收藏 引用
Supercomputing Conference
作者: Ping Gao Xiaohui Duan Jiaxu Guo Jin Wang Zhenya Song Lizhen Cui Xiangxu Meng Xin Liu Wusheng Zhang Ming Ma Guohui Li Dexun Chen Haohuan Fu Wei Xue Weiguo Liu Guangwen Yang School of Software Shandong University Jinan China National Supercomputing Center in Wuxi Wuxi China Department of Computer Science and Technology Tsinghua University Beijing China College of Computer Science and Technology Jilin University Changchun China Department of Engineering Mechanics Center for Nano and Micro Mechanics Tsinghua University Beijing China Ministry of Natural Resources First Institute of Oceanography and Key Laboratory of Marine Science and Numerical Modeling Qingdao China Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR) Jinan China Engineering Research Center of Digital Media Technology Ministry of Education Jinan China Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China Department of Earth System Science Ministry of Education Key Lab for Earth System Modeling Tsinghua University Beijing China
LAMMPS is one of the most popular Molecular Dynamic (MD) packages and is widely used in the field of physics, chemistry and materials simulation. Layered Materials Force Field (LMFF) is our expansion of the LAMMPS pot... 详细信息
来源: 评论
RETRACTED ARTICLE: Automatic detection technology for sports players based on image recognition technology: the significance of big data technology in China’s sports field
收藏 引用
Annals of Operations Research 2022年 第1期326卷 97-97页
作者: Li, Hongge Manickam, Adhiyaman Samuel, R. Dinesh Jackson Physical Education Department Changchun University of Technology Changchun China Research Institute for Future Media Computing College of Computer Science and Software Engineering Shenzhen University Shenzhen China Faculty of Technology Design and Environment Visual Artificial Intelligence Lab Oxford Brookes University Oxford UK
来源: 评论
GIscience in the Era of Artificial intelligence: A Research Agenda Towards Autonomous GIS
arXiv
收藏 引用
arXiv 2025年
作者: Li, Zhenlong Ning, Huan Gao, Song Janowicz, Krzysztof Li, Wenwen Arundel, Samantha T. Yang, Chaowei Bhaduri, Budhendra Wang, Shaowen Zhu, A. Xing Gahegan, Mark Shekhar, Shashi Ye, Xinyue McKenzie, Grant Cervone, Guido Hodgson, Michael E. Geoinformation and Big Data Research Lab Department of Geography The Pennsylvania State University University ParkPA United States Department of Geography University of Wisconsin – Madison WI United States STKO Lab Department of Geography and Regional Research University of Vienna Vienna Austria Spatial Analysis Research Center School of Geographical Sciences and Urban Planning Arizona State University AZ United States Center of Excellence for Geospatial Information Science U.S. Geological Survey VA United States NSF Spatiotemporal Innovation Center Department of Geography & Geoinformation Science George Mason University VA United States TN United States CyberGIS Center for Advanced Digital and Spatial Studies Department of Geography and Geographic Information Science University of Illinois Urbana-Champaign IL United States School of Computer Science University of Auckland New Zealand Department of Computer Science & Engineering University of Minnesota MN United States Department of Landscape Architecture & Urban Planning Center for Geospatial Sciences Applications & Technology Texas A&M University TX United States Platial Analysis Lab Department of Geography McGill University Quebec Canada Institute for Computational and Data Sciences Department of Geography The Pennsylvania State University University ParkPA United States Department of Geography University of South Carolina SC United States
The advent of generative AI exemplified by large language models (LLMs) opens new ways to represent and compute geographic information and transcends the process of geographic knowledge production, driving geographic ... 详细信息
来源: 评论
Harnessing multimodal approaches for depression detection using large language models and facial expressions
Npj mental health research
收藏 引用
Npj mental health research 2024年 第1期3卷 66页
作者: Misha Sadeghi Robert Richer Bernhard Egger Lena Schindler-Gmelch Lydia Helene Rupp Farnaz Rahimi Matthias Berking Bjoern M Eskofier Machine Learning and Data Analytics Lab (MaD Lab) Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. misha.sadeghi@fau.de. Machine Learning and Data Analytics Lab (MaD Lab) Department Artificial Intelligence in Biomedical Engineering (AIBE) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. Chair of Visual Computing (LGDV) Department of Computer Science Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91058 Germany. Chair of Clinical Psychology and Psychotherapy (KliPs) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Erlangen 91052 Germany. Translational Digital Health Group Institute of AI for Health Helmholtz Zentrum München - German Research Center for Environmental Health Neuherberg 85764 Germany.
Detecting depression is a critical component of mental health diagnosis, and accurate assessment is essential for effective treatment. This study introduces a novel, fully automated approach to predicting depression s...
来源: 评论