咨询与建议

限定检索结果

文献类型

  • 724 篇 期刊文献
  • 549 篇 会议

馆藏范围

  • 1,273 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 871 篇 工学
    • 651 篇 计算机科学与技术...
    • 562 篇 软件工程
    • 167 篇 信息与通信工程
    • 145 篇 生物工程
    • 114 篇 控制科学与工程
    • 92 篇 生物医学工程(可授...
    • 89 篇 电气工程
    • 79 篇 光学工程
    • 57 篇 电子科学与技术(可...
    • 55 篇 机械工程
    • 55 篇 化学工程与技术
    • 36 篇 土木工程
    • 35 篇 建筑学
    • 27 篇 交通运输工程
    • 24 篇 动力工程及工程热...
    • 23 篇 仪器科学与技术
  • 485 篇 理学
    • 232 篇 数学
    • 173 篇 生物学
    • 90 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 64 篇 化学
    • 33 篇 系统科学
  • 237 篇 管理学
    • 128 篇 图书情报与档案管...
    • 121 篇 管理科学与工程(可...
    • 46 篇 工商管理
  • 95 篇 医学
    • 81 篇 临床医学
    • 51 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 40 篇 法学
    • 31 篇 社会学
  • 28 篇 教育学
    • 22 篇 教育学
  • 21 篇 农学
  • 14 篇 经济学
  • 2 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 44 篇 deep learning
  • 44 篇 semantics
  • 32 篇 feature extracti...
  • 27 篇 training
  • 24 篇 machine learning
  • 23 篇 reinforcement le...
  • 22 篇 semantic segment...
  • 22 篇 computational mo...
  • 21 篇 accuracy
  • 20 篇 contrastive lear...
  • 19 篇 recommender syst...
  • 19 篇 data mining
  • 19 篇 data models
  • 16 篇 object detection
  • 16 篇 adaptation model...
  • 15 篇 convolution
  • 15 篇 artificial intel...
  • 15 篇 computer vision
  • 14 篇 task analysis
  • 14 篇 transformers

机构

  • 52 篇 state key labora...
  • 45 篇 gaoling school o...
  • 41 篇 beijing key labo...
  • 33 篇 national enginee...
  • 26 篇 shenzhen institu...
  • 25 篇 peng cheng labor...
  • 25 篇 school of artifi...
  • 23 篇 shenzhen researc...
  • 22 篇 national enginee...
  • 22 篇 key laboratory o...
  • 21 篇 key laboratory o...
  • 20 篇 college of compu...
  • 19 篇 school of comput...
  • 19 篇 university of ch...
  • 19 篇 school of data s...
  • 18 篇 university of sc...
  • 18 篇 school of comput...
  • 17 篇 institute of art...
  • 17 篇 school of comput...
  • 17 篇 school of comput...

作者

  • 53 篇 chen enhong
  • 43 篇 liu qi
  • 24 篇 huang zhenya
  • 22 篇 shen linlin
  • 20 篇 li yidong
  • 19 篇 li tianrui
  • 17 篇 qi liu
  • 15 篇 wen ji-rong
  • 15 篇 enhong chen
  • 14 篇 wang meng
  • 14 篇 yidong li
  • 14 篇 lian defu
  • 12 篇 zhang zaixi
  • 12 篇 lian xiaoqin
  • 12 篇 su bing
  • 12 篇 wang lihui
  • 12 篇 liu yiwen
  • 11 篇 gao chao
  • 11 篇 xiong hui
  • 11 篇 zhang kai

语言

  • 999 篇 英文
  • 262 篇 其他
  • 20 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Big Data Technology and Cognitive Intelligence Laboratory"
1273 条 记 录,以下是991-1000 订阅
排序:
Applying metagenomics sequencing data to assistantly analysize acne disease based on FP-growth method
收藏 引用
Journal of Computers (Taiwan) 2020年 第6期31卷 246-257页
作者: Gao, Xue-Yi Wang, Yu Sun, Meng-Ru Beijing Key Laboratory of Big Data Technology for Food Safety School of Artificial Intelligence Beijing Technology and Business University Beijing China
Acne, as a high incidence of chronic inflammatory skin disease, has a complex etiology and pathogenesis, and microbial colonization is currently considered as one of the important causes. Therefore, in this paper meta... 详细信息
来源: 评论
Adaptive Convolutional Neural Network for Image Super-resolution
arXiv
收藏 引用
arXiv 2024年
作者: Tian, Chunwei Zhang, Xuanyu Wang, Tao Zhang, Yongjun Zhu, Qi Lin, Chia-Wen The School of Software Northwestern Polytechnical University Xi’an710129 China The National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Xi’an710129 China The Yangtze River Delta Research Institute Northwestern Polytechnical University Taicang215400 China The School of Computer Science Northwestern Polytechnical University Xi’an710129 China The College of Computer Science and Technology Guizhou University Guiyang550025 China The School of Artificial Intelligence Nanjing University of Aeronautics and Astronautics Nanjing210016 China The Department of Electrical Engineering The Institute of Communications Engineering National Tsing Hua University Taiwan
Convolutional neural networks can automatically learn features via deep network architectures and given input samples. However, the robustness of obtained models may face challenges in varying scenes. bigger differenc... 详细信息
来源: 评论
Learning discrete representations via constrained clustering for effective and efficient dense retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Zhan, Jingtao Mao, Jiaxin Liu, Yiqun Guo, Jiafeng Zhang, Min Ma, Shaoping Department of Computer Science and Technology Institute for Artificial Intelligence Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China Beijing Key Laboratory of Big Data Management and Analysis Methods Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Dense Retrieval (DR) has achieved state-of-the-art first-stage ranking effectiveness. However, the efficiency of most existing DR models is limited by the large memory cost of storing dense vectors and the time-consum... 详细信息
来源: 评论
MetaGCD: Learning to Continually Learn in Generalized Category Discovery
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Yanan Chi, Zhixiang Wang, Yang Feng, Songhe Key Laboratory of Big Data & Artificial Intelligence in Transportation Ministry of Education Beijing Jiaotong University Beijing100044 China School of Computer and Information Technology Beijing Jiaotong University Beijing100044 China Department of Electrical and Computer Engineering University of Toronto TorontoM5G1V7 Canada Department of Computer Science and Software Engineering Concordia University MontrealH3G2J1 Canada
In this paper, we consider a real-world scenario where a model that is trained on pre-defined classes continually encounters unlabeled data that contains both known and novel classes. The goal is to continually discov... 详细信息
来源: 评论
Interpreting dense retrieval as mixture of topics
arXiv
收藏 引用
arXiv 2021年
作者: Zhan, Jingtao Mao, Jiaxin Liu, Yiqun Guo, Jiafeng Zhang, Min Ma, Shaoping Department of Computer Science and Technology Institute for Artificial Intelligence Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China Beijing Key Laboratory of Big Data Management and Analysis Methods Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Dense Retrieval (DR) reaches state-of-the-art results in first-stage retrieval, but little is known about the mechanisms that contribute to its success. Therefore, in this work, we conduct an interpretation study of r... 详细信息
来源: 评论
FuXi Weather: A data-to-forecast machine learning system for global weather
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Xiuyu Zhong, Xiaohui Xu, Xiaoze Huang, Yuanqing Li, Hao Neelin, J. David Chen, Deliang Feng, Jie Han, Wei Wu, Libo Qi, Yuan Shanghai Academy of Artificial Intelligence for Science Shanghai200232 China Artificial Intelligence Innovation and Incubation Institute Fudan University Shanghai200433 China School of Atmospheric Physics Nanjing University of Information Science and Technology Nanjing210044 China Earth System Modeling and Prediction Centre China Meteorological Administration Beijing100081 China Department of Atmospheric and Oceanic Sciences University of California Los Angeles90095 United States Ministry of Education Key Laboratory for Earth System Modeling Department of Earth System Science Tsinghua University Beijing100084 China University of Gothenburg Gothenburg Sweden Department of Atmospheric and Oceanic Sciences Institute of Atmospheric Sciences Fudan University Shanghai200433 China School of Data Science Fudan University Shanghai200433 China Institute for Big Data Fudan University Shanghai200433 China MOE Laboratory for National Development and Intelligent Governance Fudan University Shanghai200433 China
Weather forecasting traditionally relies on numerical weather prediction (NWP) systems that integrates global observational systems, data assimilation (DA), and forecasting models. Despite steady improvements in forec... 详细信息
来源: 评论
A parameter adaptive differential evolution based on depth information
A parameter adaptive differential evolution based on depth i...
收藏 引用
作者: Meng, Zhenyu Yang, Cheng Meng, Fanjia Chen, Yuxin Lin, Fang Institute of Artificial Intelligence Fujian University of Technology Fuzhou China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fuzhou China Intelligent Information Processing Research Center Fujian University of Technology Fuzhou China Guanzhuang Central Primary School of Zhangqiu District Jinan China
Differential Evolution (DE) was an easy-coding and efficient stochastic algorithm for global optimization, and the whole optimization process simulates biological evolution. Superior individuals of the population that... 详细信息
来源: 评论
A heterogeneous group CNN for image super-resolution
arXiv
收藏 引用
arXiv 2022年
作者: Tian, Chunwei Zhang, Yanning Zuo, Wangmeng Lin, Chia-Wen Zhang, David Yuan, Yixuan The School of Software Northwestern Polytechnical University Shaanxi Xi’an710129 China The National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi’an710129 China The School of Computer Science Northwestern Polytechnical University The National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi’an710129 China The School of Computer Science and Technology Harbin Institute of Technology Heilongjiang Harbin150001 China The Department of Electrical Engineering The Institute of Communications Engineering National Tsing Hua University Hsinchu Taiwan Guangdong Shenzhen518172 China The Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China The Department of Electronic Engineering The Chinese University of Hong Kong Hong Kong
Convolutional neural networks (CNNs) have obtained remarkable performance via deep architectures. However, these CNNs often achieve poor robustness for image superresolution (SR) under complex scenes. In this paper, w... 详细信息
来源: 评论
JGC-IAGCL: Fusing joint graph convolution and intent-aware graph contrastive learning for explainable recommendation
收藏 引用
Information Fusion 2025年 123卷
作者: Yang, Zhi Lin, Chuan Qin, Yongbin Huang, Ruizhang Chen, Yanping Qin, Jiwei State Key Laboratory of Public Big Data Guizhou University Guiyang Guizhou550025 China Text Computing & Cognitive Intelligence Engineering Research Center of National Education Ministry College of Computer Science and Technology Guizhou University Guiyang Guizhou550025 China College of Information Science and Engineering Xinjiang University Xinjiang Uygur Autonomous Region Urumqi830046 China
Graph contrastive learning (GCL) enhances recommendation accuracy by leveraging self-supervised features to refine node representations from large-scale unlabeled data. Traditional GCL-based recommendation models typi... 详细信息
来源: 评论
A parameter adaptive de algorithm on real-parameter optimization
A parameter adaptive de algorithm on real-parameter optimiza...
收藏 引用
作者: Pan, Jeng-Shyang Yang, Cheng Meng, Fanjia Chen, Yuxin Meng, Zhenyu College of Computer Science and Engineering Shandong University of Science and Technology Qingdao China Institute of Artificial Intelligence Fujian University of Technology Fuzhou China Guanzhuang Central Primary School of Zhangqiu District Jinan China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fuzhou China
Differential Evolution (DE) algorithm generates a population of individuals by encoding with a floating point vector, and it is a simple and effective population-based stochastic optimization algorithm for global opti... 详细信息
来源: 评论