咨询与建议

限定检索结果

文献类型

  • 757 篇 期刊文献
  • 552 篇 会议

馆藏范围

  • 1,309 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 900 篇 工学
    • 675 篇 计算机科学与技术...
    • 564 篇 软件工程
    • 174 篇 信息与通信工程
    • 148 篇 生物工程
    • 129 篇 控制科学与工程
    • 101 篇 电气工程
    • 94 篇 生物医学工程(可授...
    • 78 篇 光学工程
    • 58 篇 电子科学与技术(可...
    • 55 篇 机械工程
    • 55 篇 化学工程与技术
    • 36 篇 土木工程
    • 35 篇 建筑学
    • 29 篇 交通运输工程
    • 24 篇 动力工程及工程热...
    • 23 篇 仪器科学与技术
  • 487 篇 理学
    • 233 篇 数学
    • 176 篇 生物学
    • 90 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 67 篇 化学
    • 32 篇 系统科学
  • 238 篇 管理学
    • 129 篇 图书情报与档案管...
    • 120 篇 管理科学与工程(可...
    • 45 篇 工商管理
  • 104 篇 医学
    • 88 篇 临床医学
    • 57 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 39 篇 法学
    • 30 篇 社会学
  • 28 篇 教育学
    • 22 篇 教育学
  • 21 篇 农学
  • 14 篇 经济学
  • 2 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 46 篇 deep learning
  • 43 篇 semantics
  • 32 篇 feature extracti...
  • 28 篇 training
  • 26 篇 machine learning
  • 23 篇 reinforcement le...
  • 23 篇 computational mo...
  • 22 篇 semantic segment...
  • 21 篇 contrastive lear...
  • 21 篇 accuracy
  • 19 篇 recommender syst...
  • 19 篇 data mining
  • 19 篇 data models
  • 17 篇 object detection
  • 17 篇 visualization
  • 17 篇 adaptation model...
  • 15 篇 transformers
  • 15 篇 convolution
  • 15 篇 artificial intel...
  • 15 篇 computer vision

机构

  • 53 篇 state key labora...
  • 44 篇 gaoling school o...
  • 40 篇 beijing key labo...
  • 34 篇 national enginee...
  • 29 篇 peng cheng labor...
  • 26 篇 shenzhen institu...
  • 25 篇 national enginee...
  • 25 篇 school of artifi...
  • 23 篇 shenzhen researc...
  • 22 篇 key laboratory o...
  • 22 篇 key laboratory o...
  • 21 篇 college of compu...
  • 21 篇 school of comput...
  • 20 篇 school of comput...
  • 20 篇 university of ch...
  • 20 篇 school of data s...
  • 19 篇 school of comput...
  • 19 篇 university of sc...
  • 18 篇 school of comput...
  • 18 篇 key laboratory o...

作者

  • 53 篇 chen enhong
  • 42 篇 liu qi
  • 24 篇 huang zhenya
  • 21 篇 li tianrui
  • 21 篇 li yidong
  • 21 篇 shen linlin
  • 18 篇 qi liu
  • 15 篇 wen ji-rong
  • 15 篇 enhong chen
  • 14 篇 wang meng
  • 14 篇 yidong li
  • 14 篇 lian defu
  • 13 篇 liu yiwen
  • 12 篇 zhang zaixi
  • 12 篇 lian xiaoqin
  • 12 篇 su bing
  • 12 篇 wang lihui
  • 11 篇 qin yongbin
  • 11 篇 gao chao
  • 11 篇 xiong hui

语言

  • 1,152 篇 英文
  • 143 篇 其他
  • 16 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Big Data Technology and Cognitive Intelligence Laboratory"
1309 条 记 录,以下是1161-1170 订阅
排序:
POSTER: Will Sentiment of Forex News Effect Forecast of the RMB Exchange Rate?  16
POSTER: Will Sentiment of Forex News Effect Forecast of the ...
收藏 引用
16th ACM International Conference on Computing Frontiers, CF 2019
作者: Cheng, Zhou Wang, Jixiang Qi, Tianmei Zhao, Junfeng Wang, Zhihong Guo, Yi Zhou, Yu Co. Ltd Shanghai China Department of Computer Science and Engineering East China University of Science and Technology Shanghai China Business Intelligence and Visualization Research Center National Engineering Laboratory for Big Data Distribution and Exchange Technologies Shanghai China
The forecast and analysis of the trend of the RMB exchange rate have been deeply explored by many researchers in the financial field, but the combination of public opinion sentiment data and historical market data to ... 详细信息
来源: 评论
UCPM: Uncertainty-Guided Cross-Modal Retrieval with Partially Mismatched Pairs
收藏 引用
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 2025年 PP卷 PP页
作者: Quanxing Zha Xin Liu Yiu-Ming Cheung Shu-Juan Peng Xing Xu Nannan Wang Huaqiao University Department of Computer Science Xiamen 361021 China Key Laboratory of Pattern Recognition and Computer Vision Xiamen 361021 China Huaqiao University Fujian Key Laboratory of Big Data Intelligence and Security Xiamen 361021 China Hong Kong Baptist University Department of Computer Science Hong Kong Huaqiao University Department of Artificial Intelligence Xiamen 361021 China Fujian Province University Key Laboratory of Computer Vision and Machine Learning (Huaqiao University) Xiamen 361021 China University of Electronic Science and Technology of China Center for Future Multimedia School of Computer Science and Engineering Chengdu 610051 China Xidian University State Key Laboratory of Integrated Services Networks Xi’an 710071 China
The manual annotation of perfectly aligned labels for cross-modal retrieval (CMR) is incredibly labor-intensive. As an alternative, the collection of co-occurring data pairs from the Internet is a remarkably cost-effe... 详细信息
来源: 评论
$\mathsf{NCF}$NCF: A Neural Context Fusion Approach to Raw Mobility Annotation
收藏 引用
IEEE Transactions on Mobile Computing 2020年 第1期21卷 226-238页
作者: Renjun Hu Jingbo Zhou Xinjiang Lu Hengshu Zhu Shuai Ma Hui Xiong SKLSDE Lab Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Business Intelligence Lab Baidu Research National Engineering Laboratory of Deep Learning Technology and Application Beijing China Talent Intelligence Center Baidu Inc. Beijing China Management Science and Information Systems Department Rutgers Business School Rutgers University Newark NJ USA
Understanding human mobility patterns at the point-of-interest (POI) scale plays an important role in enhancing business intelligence in mobile environments. While large efforts have been made in this direction, most ... 详细信息
来源: 评论
Co-evolution of cooperation and resource allocation in the advantageous environment-based spatial multi-game using adaptive control
收藏 引用
Chaos, Solitons & Fractals 2025年 199卷
作者: Chengbin Sun Alfonso de Miguel-Arribas Chaoqian Wang Haoxiang Xia Yamir Moreno School of Economics and Management Dalian University of Technology Dalian 116024 China Institute for Biocomputation and Physics of Complex Systems (BIFI) University of Zaragoza Zaragoza 50018 Spain Zaragoza Logistics Center (ZLC) Zaragoza 50018 Spain Department of Computational and Data Sciences George Mason University Fairfax VA 22030 USA Key Laboratory of Social Computing and Cognitive Intelligence at Dalian University of Technology Ministry of Education of China Dalian 116024 China Department of Theoretical Physics University of Zaragoza Zaragoza 50018 Spain
In real-life complex systems, individuals often encounter multiple social dilemmas that cannot be effectively captured using a single-game model. Furthermore, the environment and limited resources both play a crucial ... 详细信息
来源: 评论
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks
arXiv
收藏 引用
arXiv 2019年
作者: Baykal, Cenk Liebenwein, Lucas Gilitschenski, Igor Feldman, Dan Rus, Daniela Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology United States Robotics and Big Data Laboratory University of Haifa Israel
We introduce a family of pruning algorithms that provably sparsifies the parameters of a trained model in a way that approximately preserves the model's predictive accuracy. Our algorithms use a small batch of inp... 详细信息
来源: 评论
FedLGMatch: Federated semi-supervised learning via joint local and global pseudo labeling
收藏 引用
Knowledge-Based Systems 2025年 320卷
作者: Zhao, Qing Chu, Jielei Li, Zhaoyu Huang, Wei Luo, Zhipeng Li, Tianrui School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu611756 China Engineering Research Center of Sustainable Urban Intelligent Transportation Ministry of Education Chengdu611756 China National Engineering Laboratory of Integrated Transportation Big Data Application Technology Southwest Jiaotong University Chengdu611756 China Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province Southwest Jiaotong University Chengdu611756 China China Railway Engineering Group Limited Beijing100039 China China Railway Eryuan Engineering Group Co. Ltd. Sichuan Chengdu610031 China College of Computer and Data Science Fuzhou University China
The bulk of existing Federated Learning (FL) algorithms pay attention to supervised setting and assume that clients have fully labeled data. However, it may be impractical for all clients to obtain plenty of labels du... 详细信息
来源: 评论
Abnormal Scanning Patterns Based on Eye Movement Entropy in Early Psychosis
收藏 引用
Biological Psychiatry: cognitive Neuroscience and Neuroimaging 2024年
作者: Zhang, Dan Ma, Chunyan Xu, Lihua Liu, Xu Cui, Huiru Wei, Yanyan Zheng, Wensi Hong, Yawen Xie, Yuou Qian, Zhenying Hu, Yegang Tang, Yingying Li, Chunbo Liu, Zhi Chen, Tao Liu, Haichun Zhang, Tianhong Wang, Jijun Shanghai Key Laboratory of Psychotic Disorders Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine People's Republic of China Shanghai China First Clinical Medical College of Nanjing Medical University People's Republic of China Nanjing China Shanghai Institute for Advanced Communication and Data Science Shanghai University People's Republic of China Shanghai China School of Communication and Information Engineering Shanghai University People's Republic of China Shanghai China Labor and Worklife Program Harvard University Cambridge Massachusetts United States Big Data Research Laboratory University of Waterloo Waterloo ON Canada Niacin (Shanghai) Technology Co. Ltd. People's Republic of China Shanghai China Department of Automation Shanghai Jiao Tong University People's Republic of China Shanghai China Shanghai Mental Health Center Shanghai Engineering Research Center of Intelligent Psychological Evaluation and Intervention Shanghai Key Laboratory of Psychotic Disorders Shanghai Jiaotong University School of Medicine People's Republic of China Shanghai China CAS Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences People's Republic of China Shanghai China Institute of Psychology and Behavioral Science Shanghai Jiao Tong University People's Republic of China Shanghai China
Background: Restricted scan path mode is hypothesized to explain abnormal scanning patterns in patients with schizophrenia. Here, we calculated entropy scores (drawing on gaze data to measure the statistical randomnes... 详细信息
来源: 评论
Learning graphons via structured gromov-wasserstein barycenters
arXiv
收藏 引用
arXiv 2020年
作者: Xu, Hongteng Luo, Dixin Carin, Lawrence Zha, Hongyuan Gaoling School of Artificial Intelligence Renmin University of China 59 Zhongguancun St Haidian District Beijing100872 China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China School of Computer Science and Technology Beijing Institue of Technology 5 Zhongguancun St Haidian District100811 China Department of ECE Duke University DurhamNC27708 United States School of Data Science Shenzhen Research Institute of Big Data Chinese University of Hong Kong Hong Kong
We propose a novel and principled method to learn a nonparametric graph model called graphon, which is defined in an infinite-dimensional space and represents arbitrary-size graphs. Based on the weak regularity lemma ... 详细信息
来源: 评论
On the value of imbalance loss functions in enhancing deep learning-based vulnerability detection
收藏 引用
Expert Systems with Applications 2025年 291卷
作者: Xiaoxue Ma Yanzhong He Jacky Keung Cheng Tan Chuanxiang Ma Wenhua Hu Fuyang Li School of Science and Technology Hong Kong Metropolitan University Hong Kong China School of Computer Science Wuhan University Wuhan Hubei China School of Computer Science and Artificial Intelligence Wuhan University of Technology Wuhan Hubei China Department of Computer Science City University of Hong Kong Hong Kong China School of Computer Science Hubei University Wuhan Hubei China Hubei Key Laboratory of Big Data Intelligent Analysis and Application (Hubei University) Wuhan Hubei China
Software vulnerability detection is crucial in software engineering and information security, and deep learning has been demonstrated to be effective in this domain. However, the class imbalance issue, where non-vulne...
来源: 评论
SG-PBFT: A secure and highly efficient blockchain PBFT Consensus Algorithm for internet of vehicles
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Guangquan Liu, Yihua Xing, Jun Luo, Tao Gu, Yonghao Liu, Shaoying Zheng, Xi Vasilakos, Athanasios V. The Big Data School Qingdao Huanghai University Qingdao266427 China College of Intelligence and Computing Tianjin University Tianjin300350 China The International Engineering Institute Tianjin University Tianjin300350 China The College of Intelligence and Computing Tianjin University Tianjin Tianjin300350 China The school of Computer Science Beijing University of Posts and Telecommunications Beijing100876 China The Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia Beijing University of Posts and Telecommunications Beijing100876 China School of Informatics and Data Science Hiroshima University Japan The Department of Computing Macquarie University SydneyNSW2109 Australia The University of Technology Sydney Australia The Fuzhou University Fuzhou China Lulea University of Technology Lulea Sweden
The Internet of Vehicles (IoV) is an application of the Internet of things (IoT). It faces two main security problems: (1) the central server of the IoV may not be powerful enough to support the centralized authentica... 详细信息
来源: 评论