咨询与建议

限定检索结果

文献类型

  • 757 篇 期刊文献
  • 552 篇 会议

馆藏范围

  • 1,309 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 900 篇 工学
    • 675 篇 计算机科学与技术...
    • 564 篇 软件工程
    • 174 篇 信息与通信工程
    • 148 篇 生物工程
    • 129 篇 控制科学与工程
    • 101 篇 电气工程
    • 94 篇 生物医学工程(可授...
    • 78 篇 光学工程
    • 58 篇 电子科学与技术(可...
    • 55 篇 机械工程
    • 55 篇 化学工程与技术
    • 36 篇 土木工程
    • 35 篇 建筑学
    • 29 篇 交通运输工程
    • 24 篇 动力工程及工程热...
    • 23 篇 仪器科学与技术
  • 487 篇 理学
    • 233 篇 数学
    • 176 篇 生物学
    • 90 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 67 篇 化学
    • 32 篇 系统科学
  • 238 篇 管理学
    • 129 篇 图书情报与档案管...
    • 120 篇 管理科学与工程(可...
    • 45 篇 工商管理
  • 104 篇 医学
    • 88 篇 临床医学
    • 57 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 39 篇 法学
    • 30 篇 社会学
  • 28 篇 教育学
    • 22 篇 教育学
  • 21 篇 农学
  • 14 篇 经济学
  • 2 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 46 篇 deep learning
  • 43 篇 semantics
  • 32 篇 feature extracti...
  • 28 篇 training
  • 26 篇 machine learning
  • 23 篇 reinforcement le...
  • 23 篇 computational mo...
  • 22 篇 semantic segment...
  • 21 篇 contrastive lear...
  • 21 篇 accuracy
  • 19 篇 recommender syst...
  • 19 篇 data mining
  • 19 篇 data models
  • 17 篇 object detection
  • 17 篇 visualization
  • 17 篇 adaptation model...
  • 15 篇 transformers
  • 15 篇 convolution
  • 15 篇 artificial intel...
  • 15 篇 computer vision

机构

  • 53 篇 state key labora...
  • 44 篇 gaoling school o...
  • 40 篇 beijing key labo...
  • 34 篇 national enginee...
  • 29 篇 peng cheng labor...
  • 26 篇 shenzhen institu...
  • 25 篇 national enginee...
  • 25 篇 school of artifi...
  • 23 篇 shenzhen researc...
  • 22 篇 key laboratory o...
  • 22 篇 key laboratory o...
  • 21 篇 college of compu...
  • 21 篇 school of comput...
  • 20 篇 school of comput...
  • 20 篇 university of ch...
  • 20 篇 school of data s...
  • 19 篇 school of comput...
  • 19 篇 university of sc...
  • 18 篇 school of comput...
  • 18 篇 key laboratory o...

作者

  • 53 篇 chen enhong
  • 42 篇 liu qi
  • 24 篇 huang zhenya
  • 21 篇 li tianrui
  • 21 篇 li yidong
  • 21 篇 shen linlin
  • 18 篇 qi liu
  • 15 篇 wen ji-rong
  • 15 篇 enhong chen
  • 14 篇 wang meng
  • 14 篇 yidong li
  • 14 篇 lian defu
  • 13 篇 liu yiwen
  • 12 篇 zhang zaixi
  • 12 篇 lian xiaoqin
  • 12 篇 su bing
  • 12 篇 wang lihui
  • 11 篇 qin yongbin
  • 11 篇 gao chao
  • 11 篇 xiong hui

语言

  • 1,152 篇 英文
  • 143 篇 其他
  • 16 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Big Data Technology and Cognitive Intelligence Laboratory"
1309 条 记 录,以下是1251-1260 订阅
排序:
Improving pix2code based Bi-directional LSTM
Improving pix2code based Bi-directional LSTM
收藏 引用
IEEE International Conference on Automation, Electronics and Electrical Engineering (AUTEEE)
作者: Yanbin Liu Qidi Hu Kunxian Shu Chongqing Key Laboratory on Big Data for Bio Intelligence CQUPT Chongqing China College of Computer Science and Technology CQUPT Chongqing China
Pix2code is a framework based on deep learning to transform a graphical user interface screenshot created by the designer into computer coder with 77% of accuracy. The architecture is based on CNN and *** has been bro... 详细信息
来源: 评论
Bidirectional LSTM-CRF for biomedical named entity recognition  14
Bidirectional LSTM-CRF for biomedical named entity recogniti...
收藏 引用
14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2018
作者: Yang, Xuemin Gao, Zhihong Li, Yongmin Pan, Chuandi Yang, Ronggen Gong, Lejun Yang, Geng Jiangsu Key Laboratory of Big Data Security Intelligent Processing Nanjing University of Posts and Telecommunications Nanjing210003 China Zhejiang Engineering Research Center of Intelligence Medicine Wenzhou325035 China Faculty Intelligent Science and Control Engineering Jinling Institute of Technology Nanjing211169 China
Bio-medical entity recognition extracts significant entities, for instance cells, proteins and genes, which is an arduous task in an automatic system that mine knowledge in bioinformatics texts. In this thesis, we uti... 详细信息
来源: 评论
Corrigendum to "Commissioning and clinical implementation of an Autoencoder based Classification-Regression model for VMAT patient-specific QA in a multi-institution scenario" [Radiother. Oncol. 161 (2021) 230-240]
收藏 引用
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 2021年 163卷 119-120页
作者: Ruijie Yang Xueying Yang Le Wang Dingjie Li Yuexin Guo Ying Li Yumin Guan Xiangyang Wu Shouping Xu Shuming Zhang Maria F Chan Lisheng Geng Jing Sui Department of Radiation Oncology Peking University Third Hospital Beijing China. School of Physics Beihang University Beijing China. Brainnetome Center & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China. Department of Radiation Therapy Henan Cancer Hospital Zhengzhou China. Department of Radiation Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou China. Department of Oncology The First Affiliated Hospital of Chongqing Medical University Chongqing China. Department of Radiation Therapy Yantai Yuhuangding Hospital Yantai China. Department of Radiotherapy Shanxi Provincial Cancer Hospital Xi'an China. Department of Radiation Oncology General Hospital of People's Liberation Army Beijing China. Department of Radiation Oncology Peking University Third Hospital Beijing China Department of Ultrasound Beijing Hospital Beijing China. Medical Physics Department Memorial Sloan Kettering Cancer Center New York NY United States. School of Physics Beihang University Beijing China Beijing Advanced Innovation Center for Big Data-Based Precision Medicine School of Medicine and Engineering Beihang University Beijing China. Electronic address: lisheng.geng@***. School of Artificial Intelligence University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing China State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China. Electronic address: jsui@***.
来源: 评论
The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions
arXiv
收藏 引用
arXiv 2023年
作者: Ma, Jun Xie, Ronald Ayyadhury, Shamini Ge, Cheng Gupta, Anubha Gupta, Ritu Gu, Song Zhang, Yao Lee, Gihun Kim, Joonkee Lou, Wei Li, Haofeng Upschulte, Eric Dickscheid, Timo de Almeida, José Guilherme Wang, Yixin Han, Lin Yang, Xin Labagnara, Marco Gligorovski, Vojislav Scheder, Maxime Rahi, Sahand Jamal Kempster, Carly Pollitt, Alice Espinosa, Leon Mignot, Tâm Middeke, Jan Moritz Eckardt, Jan-Niklas Li, Wangkai Li, Zhaoyang Cai, Xiaochen Bai, Bizhe Greenwald, Noah F. Van Valen, David Weisbart, Erin Cimini, Beth A. Cheung, Trevor Brück, Oscar Bader, Gary D. Wang, Bo Peter Munk Cardiac Centre University Health Network TorontoON Canada Department of Laboratory Medicine and Pathobiology University of Toronto TorontoON Canada Vector Institute TorontoON Canada Department of Molecular Genetics University of Toronto TorontoON Canada Donnelly Centre University of Toronto TorontoON Canada Princess Margaret Cancer Centre University Health Network TorontoON Canada School of Medicine and Pharmacy Ocean University of China Qingdao China New Delhi India Laboratory Oncology Dr. BRA-IRCH All India Institute of Medical Sciences New Delhi India Department of Image Reconstruction Nanjing Anke Medical Technology Co. Ltd. Nanjing China Shanghai Artificial Intelligence Laboratory Shanghai China Graduate School of AI KAIST Seoul Korea Republic of Shenzhen Research Institute of Big Data Shenzhen China Shenzhen China Helmholtz AI Research Center Jülich Jülich Germany Faculty of Mathematics and Natural Sciences Institute of Computer Science Heinrich Heine University Düsseldorf Düsseldorf Germany Hinxton United Kingdom Champalimaud Foundation - Centre for the Unknown Lisbon Portugal Department of Bioengineering Stanford University Palo AltoCA United States Tandon School of Engineering New York University New YorkNY United States School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China Lausanne Switzerland School of Biological Sciences University of Reading Reading United Kingdom Laboratoire de Chimie Bactérienne CNRS Université Aix Marseille UMR Institut de Microbiologie de la Méditerranée Marseille France Department of Internal Medicine I University Hospital Dresden Technical University Dresden Dresden Germany Else Kroener Fresenius Center for Digital Health Technical University Dresden Dresden Germany Department of Automation University of Science and Technology of China Hefei China Institute of Advanced Technology University of Science and Technology of China Hefei Chi
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify ... 详细信息
来源: 评论
Reward Processing in Novelty Seekers: A Transdiagnostic Psychiatric Imaging Biomarker
收藏 引用
BIOLOGICAL PSYCHIATRY 2021年 第8期90卷 529-539页
作者: Qi, Shile Schumann, Gunter Bustillo, Juan Turner, Jessica A. Jiang, Rongtao Zhi, Dongmei Fu, Zening Mayer, Andrew R. Vergara, Victor M. Silva, Rogers F. Iraji, Armin Chen, Jiayu Damaraju, Eswar Ma, Xiaohong Yang, Xiao Stevens, Michael Mathalon, Daniel H. Ford, Judith M. Voyvodic, James Mueller, Bryon A. Belger, Aysenil Potkin, Steven G. Preda, Adrian Zhuo, Chuanjun Xu, Yong Chu, Congying Banaschewski, Tobias Barker, Gareth J. Bokde, Arun L. W. Quinlan, Erin Burke Desrivieres, Sylvane Flor, Herta Grigis, Antoine Garavan, Hugh Gowland, Penny Heinz, Andreas Martinot, Jean-Luc Martinot, Marie-Laure Paillere Artiges, Eric Nees, Frauke Orfanos, Dimitri Papadopoulos Paus, Tomas Poustka, Luise Hohmann, Sarah Frohner, Juliane H. Smolka, Michael N. Walter, Henrik Whelan, Robert Calhoun, Vince D. Sui, Jing [a]Tri-institutional Center for Translational Research in Neuroimaging and Data Science Georgia State University Georgia Institute Technology and Emory University Atlanta Georgia [b]Department of Psychiatry University of New Mexico Albuquerque New Mexico [c]Department of Psychology Georgia State University Atlanta Georgia [d]Olin Neuropsychiatry Research Center Hartford Connecticut [e]Department of Psychiatry University of California San Francisco San Francisco California [f]Department of Radiology Duke University Durham North Carolina [g]Department of Psychiatry University of North Carolina at Chapel Hill Chapel Hill North Carolina [h]Department of Psychiatry University of Minnesota Minneapolis Minnesota [i]Department of Psychiatry University of California Irvine Irvine California [j]Departments of Psychiatry and Psychology University of Vermont Burlington Vermont [k]Centre for Population Neuroscience and Stratified Medicine Institute for Science and Technology of Brain-Inspired Intelligence Fudan University Shanghai China [l]University of Chinese Academy of Sciences Beijing China [dd]Department of Computer Science and Engineering Nanjing University of Aeronautics and Astronautics Nanjing China [m]Brainnetome Center and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China [ee]State Key Laboratory of Cognitive Neuroscience and Learning Beijing Normal University Beijing China [n]Psychiatric Laboratory and Mental Health Center the State Key Laboratory of Biotherapy West China Hospital of Sichuan University Chengdu China [o]Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory Nankai University Affiliated Anding Hospital Tianjin China [p]Department of Humanities and Social Science Shanxi Medical University Taiyuan China [q]Department of Psychiatry and Psychotherapy Charité – Universitätsmedizin Berlin Campus Charité Mitte corporate member of Freie Universität Berlin Humboldt-Univers
BACKGROUND: Dysfunctional reward processing is implicated in multiple mental disorders. Novelty seeking (NS) assesses preference for seeking novel experiences, which is linked to sensitivity to reward environmental cu... 详细信息
来源: 评论
Correction to: Path-based estimation for link prediction
收藏 引用
International Journal of Machine Learning and Cybernetics 2021年 第9期12卷 2459-2459页
作者: Ma, Guoshuai Yan, Hongren Qian, Yuhua Wang, Lingfeng Dang, Chuangyin Zhao, Zhongying Institute of Big Data Science and Industry Shanxi University Taiyuan China School of Computer and Information Technology Shanxi University Taiyuan China Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education Shanxi University Taiyuan China Department of Electrical Engineering and Computer Science University of Wisconsin-Milwaukee Milwaukee USA Department of Manufacture Engineering and Engineering Management City University of Hong Kong Kowloon Tong Hong Kong The School of Computer Science and Engineering Shandong University of Science and Technology Qingdao China
A correction to this paper has been published: https://***/10.1007/s13042-021-01350-4
来源: 评论
Erratum to: Evotuning protocols for Transformer-based variant effect prediction on multi-domain proteins
收藏 引用
Briefings in bioinformatics 2021年 第6期22卷 bbab287页
作者: Hideki Yamaguchi Yutaka Saito Department of Computational Biology and Medical Sciences Graduate School of Frontier Sciences The University of Tokyo Kashiwa Chiba 277-8561 Japan. Artificial Intelligence Research Center National Institute of Advanced Industrial Science and Technology (AIST) Koto-ku Tokyo 135-0064 Japan. AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL) Shinjuku-ku Tokyo 169-8555 Japan.
来源: 评论
Logic could be learned from images
arXiv
收藏 引用
arXiv 2019年
作者: Guo, Qian Qian, Yuhua Liang, Xinyan She, Yanhong Li, Deyu Liang, Jiye Institute of Big Data Science and Industry Shanxi University Shanxi Taiyuan030006 China Key Laboratory of Computational Intelligence Chinese Information Processing of Ministry of Education Shanxi University Shanxi Taiyuan030006 China School of Computer and Information Technology Shanxi University Shanxi Taiyuan030006 China College of Science Xi’an Shiyou University Shanxi Xi'an710065 China
Logic reasoning is a significant ability of human intelligence and also an important task in artificial intelligence. The existing logic reasoning methods, quite often, need to design some reasoning patterns beforehan... 详细信息
来源: 评论
Feature extraction for hyperspectral imagery: The evolution from shallow to deep
arXiv
收藏 引用
arXiv 2020年
作者: Rasti, Behnood Hong, Danfeng Hang, Renlong Ghamisi, Pedram Kang, Xudong Chanussot, Jocelyn Benediktsson, Jon Atli Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany Univ. Grenoble Alpes CNRS Grenoble INP GIPSAlab Grenoble38000 France Jiangsu Key Laboratory of Big Data Analysis Technology School of Automation Nanjing University of Information Science and Technology Nanjing210044 China Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany College of Electrical and Information Engineering Hunan University Changsha410082 China Key Laboratory of Visual Perception and Artificial Intelligence of Hunan Province Changsha410082 China Univ. Grenoble Alpes Inria CNRS Grenoble INP LJK GrenobleF-38000 France Faculty of Electrical and Computer Engineering University of Iceland Reykjavik101 Iceland Faculty of Electrical and Computer Engineering University of Iceland Reykjavik107 Iceland
The final version of the paper can be found in IEEE Geoscience and Remote Sensing Magazine. Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dime... 详细信息
来源: 评论
Controllability analysis of transcriptional regulatory networks for Saccharomyces cerevisiae  44
Controllability analysis of transcriptional regulatory netwo...
收藏 引用
44th Annual Conference of the IEEE Industrial Electronics Society, IECON 2018
作者: Liu, Suling Wang, Pei Xu, Qiong Chen, Aimin Lü, Jinhu School of Mathematics and Statistics Henan University Kaifeng China School of Mathematics and Statistics Institute of Applied Mathematics Laboratory of Data Analysis Technology Henan University Kaifeng China School of Mathematics and Statistics Institute of Applied Mathematics Henan University Kaifeng China School of Automation Science and Electrical Engineering State Key Laboratory of Software Development Environment Beijing Advanced Innovation Center for Big Data Brain Machine Intelligence Beihang University Beijing China
Structural controllability of complex networks has been a research focus in recent years. However, few works considered the structural controllability of biological networks, especially for dynamic biological networks... 详细信息
来源: 评论