咨询与建议

限定检索结果

文献类型

  • 757 篇 期刊文献
  • 552 篇 会议

馆藏范围

  • 1,309 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 900 篇 工学
    • 675 篇 计算机科学与技术...
    • 564 篇 软件工程
    • 174 篇 信息与通信工程
    • 148 篇 生物工程
    • 129 篇 控制科学与工程
    • 101 篇 电气工程
    • 94 篇 生物医学工程(可授...
    • 78 篇 光学工程
    • 58 篇 电子科学与技术(可...
    • 55 篇 机械工程
    • 55 篇 化学工程与技术
    • 36 篇 土木工程
    • 35 篇 建筑学
    • 29 篇 交通运输工程
    • 24 篇 动力工程及工程热...
    • 23 篇 仪器科学与技术
  • 487 篇 理学
    • 233 篇 数学
    • 176 篇 生物学
    • 90 篇 物理学
    • 84 篇 统计学(可授理学、...
    • 67 篇 化学
    • 32 篇 系统科学
  • 238 篇 管理学
    • 129 篇 图书情报与档案管...
    • 120 篇 管理科学与工程(可...
    • 45 篇 工商管理
  • 104 篇 医学
    • 88 篇 临床医学
    • 57 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 39 篇 法学
    • 30 篇 社会学
  • 28 篇 教育学
    • 22 篇 教育学
  • 21 篇 农学
  • 14 篇 经济学
  • 2 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 46 篇 deep learning
  • 43 篇 semantics
  • 32 篇 feature extracti...
  • 28 篇 training
  • 26 篇 machine learning
  • 23 篇 reinforcement le...
  • 23 篇 computational mo...
  • 22 篇 semantic segment...
  • 21 篇 contrastive lear...
  • 21 篇 accuracy
  • 19 篇 recommender syst...
  • 19 篇 data mining
  • 19 篇 data models
  • 17 篇 object detection
  • 17 篇 visualization
  • 17 篇 adaptation model...
  • 15 篇 transformers
  • 15 篇 convolution
  • 15 篇 artificial intel...
  • 15 篇 computer vision

机构

  • 53 篇 state key labora...
  • 44 篇 gaoling school o...
  • 40 篇 beijing key labo...
  • 34 篇 national enginee...
  • 29 篇 peng cheng labor...
  • 26 篇 shenzhen institu...
  • 25 篇 national enginee...
  • 25 篇 school of artifi...
  • 23 篇 shenzhen researc...
  • 22 篇 key laboratory o...
  • 22 篇 key laboratory o...
  • 21 篇 college of compu...
  • 21 篇 school of comput...
  • 20 篇 school of comput...
  • 20 篇 university of ch...
  • 20 篇 school of data s...
  • 19 篇 school of comput...
  • 19 篇 university of sc...
  • 18 篇 school of comput...
  • 18 篇 key laboratory o...

作者

  • 53 篇 chen enhong
  • 42 篇 liu qi
  • 24 篇 huang zhenya
  • 21 篇 li tianrui
  • 21 篇 li yidong
  • 21 篇 shen linlin
  • 18 篇 qi liu
  • 15 篇 wen ji-rong
  • 15 篇 enhong chen
  • 14 篇 wang meng
  • 14 篇 yidong li
  • 14 篇 lian defu
  • 13 篇 liu yiwen
  • 12 篇 zhang zaixi
  • 12 篇 lian xiaoqin
  • 12 篇 su bing
  • 12 篇 wang lihui
  • 11 篇 qin yongbin
  • 11 篇 gao chao
  • 11 篇 xiong hui

语言

  • 1,152 篇 英文
  • 143 篇 其他
  • 16 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Big Data Technology and Cognitive Intelligence Laboratory"
1309 条 记 录,以下是271-280 订阅
排序:
A Novel Approach for Auto-Formulation of Optimization Problems
arXiv
收藏 引用
arXiv 2023年
作者: Ning, Yuting Liu, Jiayu Qin, Longhu Xiao, Tong Xue, Shangzi Huang, Zhenya Liu, Qi Chen, Enhong Wu, Jinze Anhui Province Key Laboratory of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China China State Key Laboratory of Cognitive Intelligence China iFLYTEK AI Research iFLYTEK Co. Ltd China
In the Natural Language for Optimization (NL4Opt) NeurIPS 2022 competition1, competitors focus on improving the accessibility and usability of optimization solvers, with the aim of subtask 1: recognizing the semantic ... 详细信息
来源: 评论
Dynamic Prompt Optimizing for Text-to-Image Generation
arXiv
收藏 引用
arXiv 2024年
作者: Mo, Wenyi Zhang, Tianyu Bai, Yalong Su, Bing Wen, Ji-Rong Yang, Qing Gaoling School of Artificial Intelligence Renmin University of China China Beijing Key Laboratory of Big Data Management and Analysis Methods China Du Xiaoman Technology
Text-to-image generative models, specifically those based on diffusion models like Imagen and Stable Diffusion, have made substantial advancements. Recently, there has been a surge of interest in the delicate refineme... 详细信息
来源: 评论
Unraveling Intricacies: A Decomposition Approach for Few-Shot Multi-Intent Spoken Language Understanding
Unraveling Intricacies: A Decomposition Approach for Few-Sho...
收藏 引用
2024 IEEE International Conference on big data, bigdata 2024
作者: Hua, Wenbin Wang, Yufan Fan, Rui Tu, Xinhui He, Tingting Central China Normal University Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning National Language Resources Monitor Research Center for Network Media Wuhan China Central China Normal University School of Computer Wuhan China Shenzhen Technology University College of Big Data and Internet Shenzhen China Central China Normal University Faculty of Artificial Intelligence in Education Wuhan China
Few-shot multi-intent spoken language understanding (SLU) aims to detect user's multiple intents and key slots using a tiny amount of annotated data. Prevailing multi-intent SLU models typically rely on abundant d... 详细信息
来源: 评论
Quiz-based Knowledge Tracing
arXiv
收藏 引用
arXiv 2023年
作者: Shen, Shuanghong Chen, Enhong Xu, Bihan Liu, Qi Huang, Zhenya Zhu, Linbo Su, Yu Anhui Province Key Laboratory of Big Data Analysis and Application School of Data Science School of Computer Science and Techonology University of Science and Technology of China State Key Laboratory of Cognitive Intelligence Anhui Hefei230026 China Anhui Province Key Laboratory of Big Data Analysis and Application School of Data Science School of Computer Science and Techonology University of Science and Technology of China State Key Laboratory of Cognitive Intelligence Institute of Artificial Intelligence Hefei Comprehensive National Science Center Anhui Hefei230026 China School of Computer Science and Technology Hefei Normal University Institute of Artificial Intelligence Hefei Comprehensive National Science Center Anhui Hefei230601 China Institute of Artificial Intelligence Hefei Comprehensive National Science Center Anhui Hefei230026 China
Knowledge tracing (KT) aims to assess individuals’ evolving knowledge states according to their learning interactions with different exercises in online learning systems (OIS), which is critical in supporting decisio... 详细信息
来源: 评论
Partitioned Inverted Index Compression Using Hierarchical Dirichlet Process
Partitioned Inverted Index Compression Using Hierarchical Di...
收藏 引用
Neural Networks, Information and Communication Engineering (NNICE), International Conference on
作者: Runzhu He Youli Qu Dept. Key Laboratory of Big Data & Artifcial Intelligence in Transportation Ministry of Education School of Computer and Information Technology Beijing Jiaotong University Beijing China
In large-scale search engines, the core data structure is the inverted index, essentially a collection of integer sequences within inverted lists. Precise partitioning of these sequences enables efficient query proces...
来源: 评论
An Efficient Continuous Control Perspective for Reinforcement-Learning-based Sequential Recommendation
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Jun Wu, Likang Liu, Qi Yang, Yu School of Data Science City University of Hong Kong Kowloon Hong Kong College of Management and Economics Tianjin University Tianjin China Anhui Province Key Laboratory of Big Data Analysis and Application University of Science and Technology of China Anhui Hefei China State Key Laboratory of Cognitive Intelligence Anhui Hefei China
Sequential recommendation, where user preference is dynamically inferred from sequential historical behaviors, is a critical task in recommender systems (RSs). To further optimize long-term user engagement, offline re... 详细信息
来源: 评论
Research on Point-of-Interest Recommendation Method based on Graph Autoencoders and Long Short-Term Preferences  4
Research on Point-of-Interest Recommendation Method based on...
收藏 引用
4th International Conference on Artificial intelligence and Computer Engineering, ICAICE 2023
作者: Lian, Xiaoqin Mi, Jiachen Gao, Chao Chen, Xiang Mai, Weimin Guan, Wenyang Gong, Yonggang Li, Jin School of Computer and Artificial Intelligence Beijing Technology and Business University Beijing100048 China School of Electronics and Information Technology Sun Yat-sen University Guangdong Province Guangzhou510006 China Key Laboratory of Industrial Internet and Big Data China National Light Industry Beijing Technology and Business University Beijing100048 China
Point-of-Interest (POI) recommendation is one of the most important tasks in the research of Location-based Social Networks (LBSNs). To solve the spatial sparsity problem in POI recommendation, this study proposed a r... 详细信息
来源: 评论
MoCha-Stereo: Motif Channel Attention Network for Stereo Matching
MoCha-Stereo: Motif Channel Attention Network for Stereo Mat...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Ziyang Chen Wei Long He Yao Yongjun Zhang Bingshu Wang Yongbin Qin Jia Wu The State Key Laboratory of Public Big Data College of Computer Science and Technology Institute of Artificial Intelligence Guizhou University College of Software Northwest Polytechnical University
Learning-based stereo matching techniques have made significant progress. However, existing methods inevitably lose geometrical structure information during the feature channel generation process, resulting in edge de... 详细信息
来源: 评论
datasets of Visualization for Machine Learning
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Can Jiang, Ruike Tan, Shaocong Yu, Jiacheng Yang, Chaofan Shao, Hanning Yuan, Xiaoru Key Laboratory of Machine Perception Ministry of Education School of Intelligence Science and Technology Peking University China National Engineering Laboratory for Big Data Analysis and Application Peking University China
datasets of visualization play a crucial role in automating data-driven visualization pipelines, serving as the foundation for supervised model training and algorithm benchmarking. In this paper, we survey the literat... 详细信息
来源: 评论
Generative-Contrastive Graph Learning for Recommendation
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Yonghui Wu, Zhengwei Wu, Le Zhang, Kun Hong, Richang Zhang, Zhiqiang Zhou, Jun Wang, Meng Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology China Ant Group China Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology Institute of Artificial Intelligence Hefei Comprehensive National Science Center China
By treating users’ interactions as a user-item graph, graph learning models have been widely deployed in Collaborative Filtering (CF) based recommendation. Recently, researchers have introduced Graph Contrastive Lear... 详细信息
来源: 评论