咨询与建议

限定检索结果

文献类型

  • 273 篇 期刊文献
  • 207 篇 会议

馆藏范围

  • 480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 212 篇 计算机科学与技术...
    • 185 篇 软件工程
    • 61 篇 信息与通信工程
    • 52 篇 控制科学与工程
    • 45 篇 生物工程
    • 42 篇 电子科学与技术(可...
    • 37 篇 机械工程
    • 27 篇 电气工程
    • 26 篇 光学工程
    • 22 篇 生物医学工程(可授...
    • 18 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 12 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 11 篇 动力工程及工程热...
    • 10 篇 建筑学
    • 8 篇 安全科学与工程
  • 228 篇 理学
    • 114 篇 数学
    • 63 篇 物理学
    • 49 篇 生物学
    • 35 篇 统计学(可授理学、...
    • 26 篇 系统科学
    • 19 篇 化学
  • 74 篇 管理学
    • 40 篇 管理科学与工程(可...
    • 35 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 18 篇 法学
    • 18 篇 社会学
  • 14 篇 医学
    • 13 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 7 篇 经济学
  • 4 篇 农学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 20 篇 graph neural net...
  • 15 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 10 篇 semantics
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 conferences
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 synchronization
  • 6 篇 forecasting
  • 5 篇 object detection
  • 5 篇 deep learning

机构

  • 214 篇 beijing advanced...
  • 64 篇 beijing advanced...
  • 36 篇 school of comput...
  • 24 篇 school of econom...
  • 19 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 14 篇 peng cheng labor...
  • 10 篇 school of softwa...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 beihang universi...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 state key labora...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...
  • 7 篇 beijing advanced...
  • 7 篇 fert beijing ins...

作者

  • 43 篇 li jianxin
  • 41 篇 peng hao
  • 22 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 15 篇 weisheng zhao
  • 14 篇 fu xingcheng
  • 14 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 wei wei
  • 11 篇 jianxin li
  • 11 篇 ji cheng
  • 11 篇 hao peng
  • 11 篇 yunhong wang
  • 11 篇 zhao jichang

语言

  • 464 篇 英文
  • 9 篇 其他
  • 7 篇 中文
检索条件"机构=Big Data and Brain Computing"
480 条 记 录,以下是271-280 订阅
排序:
Differentially private federated knowledge graphs embedding
arXiv
收藏 引用
arXiv 2021年
作者: Peng, Hao Li, Haoran Song, Yangqiu Zheng, Vincent Li, Jianxin Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Department of Computer Science and Engineering HKUST Hong Kong AI Group Webank Co. Ltd School of Cyber Science and Technology Beihang University Beijing100191 China Peng Cheng Laboratory Shenzhen518066 China SKLSDE Beihang University Beijing100191 China
Knowledge graph embedding plays an important role in knowledge representation, reasoning, and data mining applications. However, for multiple cross-domain knowledge graphs, state-of-the-art embedding models cannot mak... 详细信息
来源: 评论
Adaptive Distributed State and Input Estimation Using Retrospective-Cost-Based Information Filter
Adaptive Distributed State and Input Estimation Using Retros...
收藏 引用
第三十九届中国控制会议
作者: Hong Wang Liang Han Yuan Liang Xiwang Dong Qingdong Li Zhang Ren School of Automation Science and Electrical Engineering Science and Technology on Aircraft Control Laboratory Beihang University School of Sino-French Engineer Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
In this paper, the problem of distributed state and input estimation using sensor networks for linear system is investigated. First, the retrospective-cost-based information filter(RCIF) is proposed to estimate the ... 详细信息
来源: 评论
Distributed State Estimation for Heterogeneous Mobile Sensor Networks with Varying Nodes
Distributed State Estimation for Heterogeneous Mobile Sensor...
收藏 引用
第三十九届中国控制会议
作者: Yingrong Yu Jie Ren Xiwang Dong Qingdong Li Science and Technology on Aircraft Control Laboratory School of Automation Science and Electrical Engineering Beihang University Beijing Aerospace System Engineering Research Institute Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
On background of cooperative air combat, state estimation of aerial maneuvering target with multi-sensor cooperative reconnaissance is discussed in this paper. Multiple moving platforms equipped with different kinds o... 详细信息
来源: 评论
Matrix Classifier On Dynamic Functional Connectivity For Mci Identification
Matrix Classifier On Dynamic Functional Connectivity For Mci...
收藏 引用
IEEE International Conference on Image Processing
作者: Lei Zhou Liang Zhang Xiao Bai Jun Zhou School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing State Key Laboratory of Software Development Environment Beihang University Beijing School of Information and Communication Technology Griffith University Nathan
One of the most popular method for Alzheimer's disease (AD) diagnosis is exploring the brain functional connectivity (FC) from resting-state functional magnetic resonance imaging (RS-fMRI). To early prevent AD, it... 详细信息
来源: 评论
Representation Learning of Graphs Using Graph Convolutional Multilayer Networks Based on Motifs
arXiv
收藏 引用
arXiv 2020年
作者: Li, Xing Wei, Wei Feng, Xiangnan Liu, Xue Zheng, Zhiming School of Mathematical Science Beihang University Beijing China Key Laboratory of Mathematics Informatics Behavioral Semantics Ministry of Education China Peng Cheng Laboratory Shenzhen Guangdong China and Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China School of Mathematical Science Beihang University Beijing China Key Laboratory of Mathematics Informatics Behavioral Semantics Ministry of Education China and Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
The graph structure is a commonly used data storage mode, and it turns out that the low-dimensional embedded representation of nodes in the graph is extremely useful in various typical tasks, such as node classificati... 详细信息
来源: 评论
Graph classification based on skeleton and component features
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Xue Wei, Wei Feng, Xiangnan Cao, Xiaobo Sun, Dan Beijing System Design Institute of Electro-Mechanic Engineering Beijing100854 China School of Mathematical Sciences Beihang University Beijing100191 China Key Laboratory of Mathematics Informatics and Behavioral Semantics Ministry of Education 100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Peng Cheng Laboratory Shenzhen Guangdong518066 China
Most existing popular methods for learning graph embedding only consider fixed-order global structural features and lack structures hierarchical representation. To address this weakness, we propose a novel graph embed... 详细信息
来源: 评论
Distributed State Estimation for Nonlinear Networked System with Correlated Noises
Distributed State Estimation for Nonlinear Networked System ...
收藏 引用
International Conference on Control, Automation, Robotics and Vision (ICARCV)
作者: Yuan Liang Sibo Hu Xiwang Dong Qingdong Li Zhang Ren School of Automation Science and Electrical Engineering Beihang University Beijing P. R. China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing P. R. China
In this paper, the problem of distributed state estimation for nonlinear networked system with correlated noises is investigated. First, a distributed weighted consensus-based cubature information filtering algorithm ... 详细信息
来源: 评论
Graph entropy guided Node Embedding Dimension Selection for Graph Neural Networks
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Gongxu Li, Jianxin Su, Jianlin Peng, Hao Yang, Carl Sun, Lichao Yu, Philip S. He, Lifang Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China School of Computer Science and Engineering Beihang University China Shenzhen Zhuiyi Technology Co. Ltd China Department of Computer Science Emory University United States Department of Computer Science and Engineering Lehigh University United States Department of Computer Science University of Illinois Chicago United States
Graph representation learning has achieved great success in many areas, including e-commerce, chemistry, biology, etc. However, the fundamental problem of choosing the appropriate dimension of node embedding for a giv... 详细信息
来源: 评论
Neural entropic estimation: A faster path to mutual information estimation
arXiv
收藏 引用
arXiv 2019年
作者: Chan, Chung Al-Bashabsheh, Ali Huang, Hing Pang Lim, Michael Tam, Da Sun Handason Zhao, Chao Department of Computer Science City University of Hong Kong Big Data and Brain Computing Beihang University
We point out a limitation of the mutual information neural estimation (MINE) where the network fails to learn at the initial training phase, leading to slow convergence in the number of training iterations. To solve t... 详细信息
来源: 评论
Recurrent interaction network for jointly extracting entities and classifying relations
arXiv
收藏 引用
arXiv 2020年
作者: Sun, Kai Zhang, Richong Mensah, Samuel Mao, Yongyi Liu, Xudong Sklsde School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Institution on Big Data and Brain Computing Beihang University Beijing China School of Electrical Engineering and Computer Science University of Ottawa Ottawa Canada
Named entity recognition (NER) and Relation extraction (RE) are two fundamental tasks in natural language processing applications. In practice, these two tasks are often to be solved simultaneously. Traditional multi-... 详细信息
来源: 评论