咨询与建议

限定检索结果

文献类型

  • 273 篇 期刊文献
  • 207 篇 会议

馆藏范围

  • 480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 212 篇 计算机科学与技术...
    • 184 篇 软件工程
    • 61 篇 信息与通信工程
    • 53 篇 控制科学与工程
    • 45 篇 生物工程
    • 42 篇 电子科学与技术(可...
    • 37 篇 机械工程
    • 27 篇 电气工程
    • 26 篇 光学工程
    • 22 篇 生物医学工程(可授...
    • 18 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 12 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 11 篇 动力工程及工程热...
    • 10 篇 建筑学
  • 226 篇 理学
    • 113 篇 数学
    • 62 篇 物理学
    • 49 篇 生物学
    • 34 篇 统计学(可授理学、...
    • 26 篇 系统科学
    • 19 篇 化学
  • 74 篇 管理学
    • 40 篇 管理科学与工程(可...
    • 35 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 17 篇 法学
    • 17 篇 社会学
  • 14 篇 医学
    • 13 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 4 篇 农学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 20 篇 graph neural net...
  • 15 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 10 篇 semantics
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 conferences
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 synchronization
  • 6 篇 forecasting
  • 5 篇 object detection
  • 5 篇 deep learning

机构

  • 214 篇 beijing advanced...
  • 64 篇 beijing advanced...
  • 36 篇 school of comput...
  • 24 篇 school of econom...
  • 19 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 14 篇 peng cheng labor...
  • 10 篇 school of softwa...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 beihang universi...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 state key labora...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...
  • 7 篇 beijing advanced...
  • 7 篇 fert beijing ins...

作者

  • 43 篇 li jianxin
  • 41 篇 peng hao
  • 22 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 15 篇 weisheng zhao
  • 14 篇 fu xingcheng
  • 14 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 wei wei
  • 11 篇 jianxin li
  • 11 篇 ji cheng
  • 11 篇 hao peng
  • 11 篇 yunhong wang
  • 11 篇 zhao jichang

语言

  • 463 篇 英文
  • 10 篇 其他
  • 7 篇 中文
检索条件"机构=Big Data and Brain Computing"
480 条 记 录,以下是21-30 订阅
排序:
Patching Weak Convolutional Neural Network Models through Modularization and Composition  22
Patching Weak Convolutional Neural Network Models through Mo...
收藏 引用
Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering
作者: Binhang Qi Hailong Sun Xiang Gao Hongyu Zhang SKLSDE Lab Beihang University China and Beijing Advanced Innovation Center for Big Data and Brain Computing China The University of Newcastle Australia
Despite great success in many applications, deep neural networks are not always robust in practice. For instance, a convolutional neuron network (CNN) model for classification tasks often performs unsatisfactorily in ... 详细信息
来源: 评论
Noise-injected Consistency Training and Entropy-constrained Pseudo Labeling for Semi-supervised Extractive Summarization  29
Noise-injected Consistency Training and Entropy-constrained ...
收藏 引用
29th International Conference on Computational Linguistics, COLING 2022
作者: Wang, Yiming Mao, Qianren Liu, Junnan Jiang, Weifeng Zhu, Hongdong Li, Jianxin Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University China The State Key Laboratory of Software Development Environment Beihang University China Institute of Artificial Intelligence Beihang University China
Labeling large amounts of extractive summarization data is often prohibitive expensive due to time, financial, and expertise constraints, which poses great challenges to incorporating summarization system in practical... 详细信息
来源: 评论
Multiple Unmanned Armored Vehicle Formation Transform
Multiple Unmanned Armored Vehicle Formation Transform
收藏 引用
Chinese Intelligent Systems Conference, CISC 2020
作者: Huang, Miqi Tian, Daxin Duan, Xuting Beijing Advanced Innovation Center for Big Data and Brain Computing School of Transport Science and Engineering Beihang University Beijing China
The formation of armored vehicle formation achievement and transforming are important research contents of vehicle formation control. Especially for the situation of unmanned armored vehicle formation. This paper comb... 详细信息
来源: 评论
Proximity-induced magnetic order in topological insulator on ferromagnetic semiconductor
收藏 引用
Science China(Information Sciences) 2023年 第12期66卷 267-274页
作者: Hangtian WANG Koichi MURATA Weiran XIE Jing LI Jie ZHANG Kang L.WANG Weisheng ZHAO Tianxiao NIE School of Integrated Circuit Science and Engineering and Advanced Innovation Center for Big Data and Brain Computing Beihang University Beihang-Goertek Joint Microelectronics Institute Qingdao Research InstituteBeihang University Department of Electrical Engineering University of California
Introducing magnetic order into topological insulator(TI) to break the time-reversal symmetry can yield numerous fascinating physical phenomena,which brings new hope for the emerging spintronic *** proximity effect ... 详细信息
来源: 评论
Personalized Federated Learning with Collaborative Aggregation Networks for Multi-Site brain Disorder Diagnosis  4
Personalized Federated Learning with Collaborative Aggregati...
收藏 引用
4th International Conference on Industrial Automation, Robotics and Control Engineering, IARCE 2024
作者: Si, Qian Li, Yang School of Cyber Science and Technology Beihang University Beijing China Department of Automation Science and Electrical Engineering The Beijing Advanced Innovation Center for Big Data and Brain Computing State Key Laboratory of Virtual Reality Technology and Systems Beijing China Advanced Institute of Information Technology Peking University Beijing China Beihang University Beijing China
In multi-site brain disease diagnosis studies, traditional centralized training methods necessitate sharing medical data, posing significant privacy risks. Federated learning (FL) offers a privacy-preserving solution ... 详细信息
来源: 评论
Hyperbolic Geometric Latent Diffusion Model for Graph Generation  41
Hyperbolic Geometric Latent Diffusion Model for Graph Genera...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Fu, Xingcheng Gao, Yisen Wei, Yuecen Sun, Qingyun Peng, Hao Li, Jianxin Li, Xianxian Key Lab of Education Blockchain and Intelligent Technology Ministry of Education Guangxi Normal University Guilin China Institute of Artificial Intelligence Beihang University Beijing China School of Software Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing School of Computer Science and Engineering Beihang University Beijing China
Diffusion models have made significant contributions to computer vision, sparking a growing interest in the community recently regarding the application of them to graph generation. Existing discrete graph diffusion m... 详细信息
来源: 评论
Dynamic Formation Tracking of Multi-agent Systems with Bounded Unknown Leader Input  5th
Dynamic Formation Tracking of Multi-agent Systems with Bou...
收藏 引用
5th Chinese Conference on Swarm Intelligence and Cooperative Control, CCSICC 2021
作者: Su, Piaoyi Dong, Xiwang Zhao, Qin Li, Qingdong Ren, Zhang School of Automation Science and Electronic Engineering Science and Technology on Aircraft Control Laboratory Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Beijing Institute of Control and Electronics Technology Beijing100038 China
This literature investigate the dynamic formation tracking problem of multiple Lagrange systems with linear nonautonomous leader over directed topology. In order to estimate the leader system, a distributed control sc... 详细信息
来源: 评论
Environment-aware dynamic graph learning for out-of-distribution generalization  23
Environment-aware dynamic graph learning for out-of-distribu...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Haonan Yuan Qingyun Sun Xingcheng Fu Ziwei Zhang Cheng Ji Hao Peng Jianxin Li Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University and School of Computer Science and Engineering Beihang University Key Lab of Education Blockchain and Intelligent Technology Guangxi Normal University Department of Computer Science and Technology Tsinghua University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
Dynamic graph neural networks (DGNNs) are increasingly pervasive in exploiting spatio-temporal patterns on dynamic graphs. However, existing works fail to generalize under distribution shifts, which are common in real...
来源: 评论
Unifying logic rules and machine learning for entity enhancing
收藏 引用
Science China(Information Sciences) 2020年 第7期63卷 142-160页
作者: Wenfei FAN Ping LU Chao TIAN School of Informatics University of Edinburgh Shenzhen Institute of Computing Sciences Shenzhen University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Alibaba Group
This paper proposes a notion of entity enhancing, which unifies entity resolution and conflict resolution, to identify tuples that refer to the same real-world entity and at the same time, correct semantic inconsisten... 详细信息
来源: 评论
data-Driven Intersection Safety Evaluation Methodology and Analysis  23
Data-Driven Intersection Safety Evaluation Methodology and A...
收藏 引用
23rd COTA International Conference of Transportation Professionals: Emerging data-Driven Sustainable Technological Innovation in Transportation, CICTP 2023
作者: Wu, Pingping Lu, Guangquan Liu, Miaomiao Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control School of Transportation Science and Engineering Beihang Univ. Beijing China Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control School of Transportation Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang Univ. Beijing China Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies Southeast Univ. Nanjing China
With the development of information and sensing technologies, a wide variety of intersection traffic data is available. The purpose of this paper is to make full use of video and commercial vehicle trajectory data to ... 详细信息
来源: 评论