咨询与建议

限定检索结果

文献类型

  • 273 篇 期刊文献
  • 207 篇 会议

馆藏范围

  • 480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 212 篇 计算机科学与技术...
    • 184 篇 软件工程
    • 61 篇 信息与通信工程
    • 53 篇 控制科学与工程
    • 45 篇 生物工程
    • 42 篇 电子科学与技术(可...
    • 37 篇 机械工程
    • 27 篇 电气工程
    • 26 篇 光学工程
    • 22 篇 生物医学工程(可授...
    • 18 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 12 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 11 篇 动力工程及工程热...
    • 10 篇 建筑学
  • 226 篇 理学
    • 113 篇 数学
    • 62 篇 物理学
    • 49 篇 生物学
    • 34 篇 统计学(可授理学、...
    • 26 篇 系统科学
    • 19 篇 化学
  • 74 篇 管理学
    • 40 篇 管理科学与工程(可...
    • 35 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 17 篇 法学
    • 17 篇 社会学
  • 14 篇 医学
    • 13 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 4 篇 农学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 20 篇 graph neural net...
  • 15 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 10 篇 semantics
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 conferences
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 synchronization
  • 6 篇 forecasting
  • 5 篇 object detection
  • 5 篇 deep learning

机构

  • 214 篇 beijing advanced...
  • 64 篇 beijing advanced...
  • 36 篇 school of comput...
  • 24 篇 school of econom...
  • 19 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 14 篇 peng cheng labor...
  • 10 篇 school of softwa...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 beihang universi...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 state key labora...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...
  • 7 篇 beijing advanced...
  • 7 篇 fert beijing ins...

作者

  • 43 篇 li jianxin
  • 41 篇 peng hao
  • 22 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 15 篇 weisheng zhao
  • 14 篇 fu xingcheng
  • 14 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 wei wei
  • 11 篇 jianxin li
  • 11 篇 ji cheng
  • 11 篇 hao peng
  • 11 篇 yunhong wang
  • 11 篇 zhao jichang

语言

  • 463 篇 英文
  • 10 篇 其他
  • 7 篇 中文
检索条件"机构=Big Data and Brain Computing"
480 条 记 录,以下是41-50 订阅
排序:
A Multi-Head Convolution Network with Attention Consistency for Facial Expression Recognition  42
A Multi-Head Convolution Network with Attention Consistency ...
收藏 引用
42nd Chinese Control Conference, CCC 2023
作者: Liu, Wenkang Sun, Mingyi Li, Yang Beihang University The Department of Automation Science and Electrical Engineering Beijing100191 China The Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing100191 China Beihang University State Key Laboratory of Virtual Reality Technology and Systems Beijing100191 China Peking University Advanced Institute of Information Technology Hangzhou310000 China
In recent years, the demand for facial expression recognition applications has increased rapidly, and its research has received extensive attention from researchers. However, the current recognition methods based on d... 详细信息
来源: 评论
Reusing Deep Neural Network Models through Model Re-engineering
Reusing Deep Neural Network Models through Model Re-engineer...
收藏 引用
International Conference on Software Engineering (ICSE)
作者: Binhang Qi Hailong Sun Xiang Gao Hongyu Zhang Zhaotian Li Xudong Liu SKLSDE Lab Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Chongqing University Chongqing China
Training deep neural network (DNN) models, which has become an important task in today's software development, is often costly in terms of computational resources and time. With the inspiration of software reuse, ...
来源: 评论
CLDG: Contrastive Learning on Dynamic Graphs
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Yiming Shi, Bin Ma, Teng Dong, Bo Zhou, Haoyi Zheng, Qinghua Department of Computer Science and Technology Xi’an Jiaotong University China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University China Department of Distance Education Xi’an Jiaotong University China School of Software Beihang University China Advanced Innovation Center for Big Data and Brain Computing Beihang University China
The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph c... 详细信息
来源: 评论
Prompt-based Unifying Inference Attack on Graph Neural Networks  39
Prompt-based Unifying Inference Attack on Graph Neural Netwo...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Wei, Yuecen Fu, Xingcheng Liu, Lingyun Sun, Qingyun Peng, Hao Hu, Chunming School of Software Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Key Lab of Education Blockchain and Intelligent Technology Ministry of Education Guangxi Normal University China
Graph neural networks (GNNs) provide important prospective insights in applications such as social behavior analysis and financial risk analysis based on their powerful learning capabilities on graph data. Nevertheles... 详细信息
来源: 评论
V2I Based Environment Perception for Autonomous Vehicles at Intersections
收藏 引用
China Communications 2021年 第7期18卷 1-12页
作者: Xuting Duan Hang Jiang Daxin Tian Tianyuan Zou Jianshan Zhou Yue Cao Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems&Safety ControlSchool of Transportation Science and EngineeringBeihang UniversityBeijing 100191China School of Cyber Science and Engineering Wuhan UniversityWuhan 430072China
In recent years,autonomous driving technology has made good progress,but the noncooperative intelligence of vehicle for autonomous driving still has many technical bottlenecks when facing urban road autonomous driving... 详细信息
来源: 评论
A Low-Code Development Framework for Constructing Industrial Apps  15th
A Low-Code Development Framework for Constructing Industrial...
收藏 引用
15th CCF Conference on Computer Supported Cooperative Work and Social computing, Chinese CSCW 2020
作者: Wang, Jingyue Qi, Binhang Zhang, Wentao Sun, Hailong SKLSDE Lab School of Computer Science and Engineering Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing100191 China
With the advent of the Industry 4.0, intelligent manufacturing has become a technological highland to conquer in the process of enterprise digitalization. As the core competitiveness of intelligent manufacturing, indu... 详细信息
来源: 评论
Instructing the Architecture Search for Spatial-temporal Sequence Forecasting with LLM
arXiv
收藏 引用
arXiv 2025年
作者: Xue, Xin Zhou, Haoyi Chen, Tianyu Zhang, Shuai Long, Yizhou Li, Jianxin Department of Computer Science Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing100191 China Department of Software Beihang University Beijing100191 China Zhongguancun Laboratory Beijing100190 China
Spatial-temporal sequence forecasting (STSF) is a long-standing research problem with widespread real-world applications. Neural architecture search (NAS), which automates the neural network design, has been shown eff... 详细信息
来源: 评论
Triplet-Aware Graph Neural Networks for Factorized Multi-Modal Knowledge Graph Entity Alignment
SSRN
收藏 引用
SSRN 2023年
作者: Li, Qian Li, Jianxin Wu, Jia Peng, Xutan Ji, Cheng Peng, Hao Wang, Lihong Yu, Philip S. Beijing Advanced Innovation Center for Big Data and Brain Computing China Beijing China School of Computing Macquarie University Sydney Australia The University of Sheffield South Yorkshire United Kingdom China University of Illinois Chicago Chicago United States
Multi-Modal Entity Alignment (MMEA), aiming to discover matching entity pairs on two multi-modal knowledge graphs (MMKGs), is an essential task in knowledge graph fusion. Through mining feature information of MMKGs, e... 详细信息
来源: 评论
Graph algorithms: parallelization and scalability
收藏 引用
Science China(Information Sciences) 2020年 第10期63卷 234-254页
作者: Wenfei FAN Kun HE Qian LI Yue WANG School of Informatics University of Edinburgh Shenzhen Institute of Computing Sciences Shenzhen University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Guangdong Province Key Laboratory of Popular High Performance Computers Shenzhen University
For computations on large-scale graphs, one often resorts to parallel algorithms. However, parallel algorithms are difficult to write, debug and analyze. Worse still, it is difficult to make algorithms parallelly scal... 详细信息
来源: 评论
Dual Contrastive Learning: Text Classification via Label-Aware data Augmentation
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Qianben Zhang, Richong Zheng, Yaowei Mao, Yongyi SKLSDE School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Institution on Big Data and Brain Computing Beihang University Beijing China School of Electrical Engineering and Computer Science University of Ottawa Ottawa Canada
Contrastive learning has achieved remarkable success in representation learning via self-supervision in unsupervised settings. However, effectively adapting contrastive learning to supervised learning tasks remains as... 详细信息
来源: 评论