咨询与建议

限定检索结果

文献类型

  • 273 篇 期刊文献
  • 207 篇 会议

馆藏范围

  • 480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 212 篇 计算机科学与技术...
    • 184 篇 软件工程
    • 61 篇 信息与通信工程
    • 53 篇 控制科学与工程
    • 45 篇 生物工程
    • 42 篇 电子科学与技术(可...
    • 37 篇 机械工程
    • 27 篇 电气工程
    • 26 篇 光学工程
    • 22 篇 生物医学工程(可授...
    • 18 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 12 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 11 篇 动力工程及工程热...
    • 10 篇 建筑学
  • 226 篇 理学
    • 113 篇 数学
    • 62 篇 物理学
    • 49 篇 生物学
    • 34 篇 统计学(可授理学、...
    • 26 篇 系统科学
    • 19 篇 化学
  • 74 篇 管理学
    • 40 篇 管理科学与工程(可...
    • 35 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 17 篇 法学
    • 17 篇 社会学
  • 14 篇 医学
    • 13 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 4 篇 农学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 20 篇 graph neural net...
  • 15 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 10 篇 semantics
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 conferences
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 synchronization
  • 6 篇 forecasting
  • 5 篇 object detection
  • 5 篇 deep learning

机构

  • 214 篇 beijing advanced...
  • 64 篇 beijing advanced...
  • 36 篇 school of comput...
  • 24 篇 school of econom...
  • 19 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 14 篇 peng cheng labor...
  • 10 篇 school of softwa...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 beihang universi...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 state key labora...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...
  • 7 篇 beijing advanced...
  • 7 篇 fert beijing ins...

作者

  • 43 篇 li jianxin
  • 41 篇 peng hao
  • 22 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 15 篇 weisheng zhao
  • 14 篇 fu xingcheng
  • 14 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 wei wei
  • 11 篇 jianxin li
  • 11 篇 ji cheng
  • 11 篇 hao peng
  • 11 篇 yunhong wang
  • 11 篇 zhao jichang

语言

  • 463 篇 英文
  • 10 篇 其他
  • 7 篇 中文
检索条件"机构=Big Data and Brain Computing"
480 条 记 录,以下是61-70 订阅
排序:
Learning from Noisy Crowd Labels with Logics
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Zhijun Sun, Hailong He, Haoqian Chen, Pengpeng SKLSDE Lab Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China China’s Aviation System Engineering Research Institute Beijing China
This paper explores the integration of symbolic logic knowledge into deep neural networks for learning from noisy crowd labels. We introduce Logic-guided Learning from Noisy Crowd Labels (Logic-LNCL), an EM-alike iter... 详细信息
来源: 评论
Learning from Noisy Crowd Labels with Logics
Learning from Noisy Crowd Labels with Logics
收藏 引用
International Conference on data Engineering
作者: Zhijun Chen Hailong Sun Haoqian He Pengpeng Chen SKLSDE Lab Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China China’s Aviation System Engineering Research Institute Beijing China
This paper explores the integration of symbolic logic knowledge into deep neural networks for learning from noisy crowd labels. We introduce Logic-guided Learning from Noisy Crowd Labels (Logic-LNCL), an EM-alike iter...
来源: 评论
Progress in research on ultrasound radiomics for predicting the prognosis of breast cancer
收藏 引用
Cancer Innovation 2023年 第4期2卷 283-289页
作者: Xuantong Gong Xuefeng Liu Xiaozheng Xie Yong Wang Department of Ultrasound National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBijingChina State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and EngineeringBejjing Advanced Innovation Center for Big Data and Brain Computing(BDBC)Beihang UniversityBeijingChina School of Computer and Communication Engi neering.University of Science and Technology Beijing BeijingChina
Breast cancer is the most common malignant tumor and the leading cause of cancer-related deaths in women *** means of predicting the prognosis of breast cancer are very helpful in guiding treatment and improving patie... 详细信息
来源: 评论
Domain-Invariant Feature Progressive Distillation with Adversarial Adaptive Augmentation for Low-Resource Cross-Domain NER
Domain-Invariant Feature Progressive Distillation with Adver...
收藏 引用
作者: Zhang, Tao Xia, Congying Liu, Zhiwei Zhao, Shu Peng, Hao Yu, Philip Department of Computer Science University of Illinois at Chicago 851 South Morgan Street ChicagoIL60607-7053 United States School of Computer Science and Technology Anhui University No. 111 Jiulong Road Hefei Anhui230601 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University No. 37 Xue Yuan Road Haidian District Beijing100191 China
Considering the expensive annotation in Named Entity Recognition (NER), Cross-domain NER enables NER in low-resource target domains with few or without labeled data, by transferring the knowledge of high-resource doma... 详细信息
来源: 评论
CLDG: Contrastive Learning on Dynamic Graphs
CLDG: Contrastive Learning on Dynamic Graphs
收藏 引用
International Conference on data Engineering
作者: Yiming Xu Bin Shi Teng Ma Bo Dong Haoyi Zhou Qinghua Zheng Department of Computer Science and Technology Xi’an Jiaotong University China Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering Xi’an Jiaotong University China Department of Distance Education Xi’an Jiaotong University China School of Software Beihang University China Advanced Innovation Center for Big Data and Brain Computing Beihang University China
The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph c...
来源: 评论
DAGAD: data Augmentation for Graph Anomaly Detection
DAGAD: Data Augmentation for Graph Anomaly Detection
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Fanzhen Liu Xiaoxiao Ma Jia Wu Jian Yang Shan Xue Amin Beheshti Chuan Zhou Hao Peng Quan Z. Sheng Charu C. Aggarwal School of Computing Macquarie University Sydney Australia School of Computing and Information Technology University of Wollongong Wollongong Australia Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China IBM T. J. Watson Research Center Yorktown NY USA
Graph anomaly detection in this paper aims to distinguish abnormal nodes that behave differently from the benign ones accounting for the majority of graph-structured instances. Receiving increasing attention from both... 详细信息
来源: 评论
DAGAD: data Augmentation for Graph Anomaly Detection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Fanzhen Ma, Xiaoxiao Wu, Jia Yang, Jian Xue, Shan Beheshti, Amin Zhou, Chuan Peng, Hao Sheng, Quan Z. Aggarwal, Charu C. School of Computing Macquarie University Sydney Australia School of Computing and Information Technology University of Wollongong Wollongong Australia Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China Ibm T. J. Watson Research Center YorktownNY United States
Graph anomaly detection in this paper aims to distinguish abnormal nodes that behave differently from the benign ones accounting for the majority of graph-structured instances. Receiving increasing attention from both... 详细信息
来源: 评论
Model learning:a survey of foundations,tools and applications
收藏 引用
Frontiers of Computer Science 2021年 第5期15卷 71-92页
作者: Shahbaz ALI Hailong SUN Yongwang ZHAO Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing 100191China SKLSDE School of Computer Science and EngineeringBeihang UniversityBeijing 100191China School of Software Beihang UniversityBeijing 100191China School of Cyber Science and Technology College of Computer ScienceZhejiang UniversityHangzhou 310058China
Software systems are present all around us and playing their vital roles in our daily *** correct functioning of these systems is of prime *** addition to classical testing techniques,formal techniques like model chec... 详细信息
来源: 评论
Physics-inspired Machine Learning for Quantum Error Mitigation
arXiv
收藏 引用
arXiv 2025年
作者: Xu, Xiao-Yue Xue, Xin Chen, Tianyu Ding, Chen Li, Tian Zhou, Haoyi Huang, He-Liang Bao, Wan-Su Henan Key Laboratory of Quantum Information and Cryptography Zhengzhou Henan450000 China Department of Computer Science Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing100191 China Department of Software Beihang University Beijing100191 China
Noise is a major obstacle in current quantum computing, and Machine Learning for Quantum Error Mitigation (ML-QEM) promises to address this challenge, enhancing computational accuracy while reducing the sampling overh... 详细信息
来源: 评论
Multi-Modal Knowledge Graph Transformer Framework for Multi-Modal Entity Alignment
arXiv
收藏 引用
arXiv 2023年
作者: Li, Qian Ji, Cheng Guo, Shu Liang, Zhaoji Wang, Lihong Li, Jianxin School of Computer Science and Engineering Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing Beijing China National Computer Network Emergency Response Technical Team Coordination Center of China China
Multi-Modal Entity Alignment (MMEA) is a critical task that aims to identify equivalent entity pairs across multi-modal knowledge graphs (MMKGs). However, this task faces challenges due to the presence of different ty... 详细信息
来源: 评论