咨询与建议

限定检索结果

文献类型

  • 273 篇 期刊文献
  • 207 篇 会议

馆藏范围

  • 480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 212 篇 计算机科学与技术...
    • 184 篇 软件工程
    • 61 篇 信息与通信工程
    • 53 篇 控制科学与工程
    • 45 篇 生物工程
    • 42 篇 电子科学与技术(可...
    • 37 篇 机械工程
    • 27 篇 电气工程
    • 26 篇 光学工程
    • 22 篇 生物医学工程(可授...
    • 18 篇 化学工程与技术
    • 18 篇 交通运输工程
    • 12 篇 仪器科学与技术
    • 11 篇 材料科学与工程(可...
    • 11 篇 动力工程及工程热...
    • 10 篇 建筑学
  • 226 篇 理学
    • 113 篇 数学
    • 62 篇 物理学
    • 49 篇 生物学
    • 34 篇 统计学(可授理学、...
    • 26 篇 系统科学
    • 19 篇 化学
  • 74 篇 管理学
    • 40 篇 管理科学与工程(可...
    • 35 篇 图书情报与档案管...
    • 16 篇 工商管理
  • 17 篇 法学
    • 17 篇 社会学
  • 14 篇 医学
    • 13 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 4 篇 农学
  • 2 篇 教育学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 20 篇 graph neural net...
  • 15 篇 feature extracti...
  • 13 篇 machine learning
  • 13 篇 training
  • 10 篇 reinforcement le...
  • 10 篇 task analysis
  • 10 篇 semantics
  • 8 篇 spintronics
  • 8 篇 microcontrollers
  • 8 篇 data models
  • 7 篇 conferences
  • 7 篇 generative adver...
  • 7 篇 topology
  • 7 篇 social networkin...
  • 6 篇 convolution
  • 6 篇 predictive model...
  • 6 篇 synchronization
  • 6 篇 forecasting
  • 5 篇 object detection
  • 5 篇 deep learning

机构

  • 214 篇 beijing advanced...
  • 64 篇 beijing advanced...
  • 36 篇 school of comput...
  • 24 篇 school of econom...
  • 19 篇 school of automa...
  • 17 篇 state key labora...
  • 15 篇 sklsde lab beiha...
  • 14 篇 peng cheng labor...
  • 10 篇 school of softwa...
  • 8 篇 anhui high relia...
  • 8 篇 school of integr...
  • 8 篇 beihang universi...
  • 8 篇 school of comput...
  • 8 篇 shandong dongyi ...
  • 8 篇 state key labora...
  • 8 篇 school of materi...
  • 8 篇 shandong dongyi ...
  • 8 篇 national compute...
  • 7 篇 beijing advanced...
  • 7 篇 fert beijing ins...

作者

  • 43 篇 li jianxin
  • 41 篇 peng hao
  • 22 篇 zhao weisheng
  • 20 篇 xiwang dong
  • 20 篇 zhang ren
  • 20 篇 yu philip s.
  • 19 篇 qingdong li
  • 15 篇 weisheng zhao
  • 14 篇 fu xingcheng
  • 14 篇 sun qingyun
  • 13 篇 wang yunhong
  • 13 篇 tian daxin
  • 12 篇 wu jia
  • 12 篇 wang lihong
  • 12 篇 wei wei
  • 11 篇 jianxin li
  • 11 篇 ji cheng
  • 11 篇 hao peng
  • 11 篇 yunhong wang
  • 11 篇 zhao jichang

语言

  • 463 篇 英文
  • 10 篇 其他
  • 7 篇 中文
检索条件"机构=Big Data and Brain Computing"
480 条 记 录,以下是81-90 订阅
排序:
Curvature Graph Generative Adversarial Networks
arXiv
收藏 引用
arXiv 2022年
作者: Li, Jianxin Fu, Xingcheng Sun, Qingyun Ji, Cheng Tan, Jiajun Wu, Jia Peng, Hao Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China School of Computer Science and Engineering Beihang University Beijing100191 China School of Computing Macquarie University Sydney Australia
Generative adversarial network (GAN) is widely used for generalized and robust learning on graph data. However, for non-Euclidean graph data, the existing GAN-based graph representation methods generate negative sampl... 详细信息
来源: 评论
Personalized Federated Learning with Collaborative Aggregation Networks for Multi-Site brain Disorder Diagnosis
Personalized Federated Learning with Collaborative Aggregati...
收藏 引用
Industrial Automation, Robotics and Control Engineering (IARCE), International Conference on
作者: Qian Si Yang Li School of Cyber Science and Technology Beihang University Beijing China Department of Automation Science and Electrical Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing State Key Laboratory of Virtual Reality Technology and Systems Advanced Institute of Information Technology Peking University Beihang University Beijing China
In multi-site brain disease diagnosis studies, traditional centralized training methods necessitate sharing medical data, posing significant privacy risks. Federated learning (FL) offers a privacy-preserving solution ... 详细信息
来源: 评论
Fast Robot Hierarchical Exploration Based on Deep Reinforcement Learning
Fast Robot Hierarchical Exploration Based on Deep Reinforcem...
收藏 引用
International Wireless Communications and Mobile computing Conference, IWCMC
作者: Shun Zuo Jianwei Niu Lu Ren Zhenchao Ouyang State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC) Beihang University Beijing China Beihang Hangzhou Innovation Institute Yuhang Beihang University Beijing China
This paper investigates the use of reinforcement learning for autonomous exploration in an unknown environment. Autonomous exploration is crucial in many situations, such as urban search, security inspection, environm...
来源: 评论
Autonomous On-ramp Merge Strategy Using Deep Reinforcement Learning in Uncertain Highway Environment
Autonomous On-ramp Merge Strategy Using Deep Reinforcement L...
收藏 引用
2022 IEEE International Conference on Unmanned Systems, ICUS 2022
作者: Wu, Sifan Tian, Daxin Zhou, Jianshan Duan, Xuting Sheng, Zhengguo Zhao, Dezong Beijing Key Laboratory For Cooperative Vehicle Infrastructure Systems&Safety Cooperative Control Beijing China Beijing Advanced Innovation Center For Big Data and Brain Computing Beijing China Department of Engineering and Design Richmond United Kingdom University of Sussex Richmond United Kingdom James Watt School of Engineering Glasgow United Kingdom University of Glasgow Glasgow United Kingdom
On-ramp merge is a complex traffic scenario in autonomous driving. Because of the uncertainty of the driving environment, most rule-based models cannot solve such a problem. In this study, we design a Deep Reinforceme... 详细信息
来源: 评论
Low-loss Zero-index Waveguides and Devices
Low-loss Zero-index Waveguides and Devices
收藏 引用
CLEO: Science and Innovations in CLEO 2024, CLEO: S and I 2024 - Part of Conference on Lasers and Electro-Optics
作者: Dong, Tian Dai, Tianxiang Chen, Ye Liu, Yueyang Liu, Hancheng Wang, Yiting Ma, Anqi Hu, Haifeng Xu, Lihua Zhao, Le Chu, Weiguo Peng, Chao Wang, Jianwei Li, Yang State Key Laboratory of Precision Measurement Technology and Instrument Department of Precision Instrument Tsinghua University Beijing100084 China State Key Laboratory for Mesoscopic Physics School of Physics Peking University Beijing100871 China State Key Laboratory of Advanced Optical Communication Systems and Networks Department of Electronics Frontiers Science Center for Nano-optoelectronics Peking University Beijing100871 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Nanofabrication Laboratory National Center for Nanoscience and Technology Beijing100190 China
We report flexible zero-index waveguides and devices whose loss is two orders of magnitude lower than the state of the art, enabling phase-error-free high-dense photonic integrated circuits for classical and quantum i... 详细信息
来源: 评论
Low-loss Zero-index Waveguides and Devices
Low-loss Zero-index Waveguides and Devices
收藏 引用
2024 Conference on Lasers and Electro-Optics, CLEO 2024
作者: Dong, Tian Dai, Tianxiang Chen, Ye Liu, Yueyang Liu, Hancheng Wang, Yiting Ma, Anqi Hu, Haifeng Xu, Lihua Zhao, Le Chu, Weiguo Peng, Chao Wang, Jianwei Li, Yang State Key Laboratory of Precision Measurement Technology and Instrument Department of Precision Instrument Tsinghua University Beijing100084 China State Key Laboratory for Mesoscopic Physics School of Physics Peking University Beijing100871 China State Key Laboratory of Advanced Optical Communication Systems and Networks Department of Electronics and Frontiers Science Center for Nano-optoelectronics Peking University Beijing100871 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China Nanofabrication Laboratory National Center for Nanoscience and Technology Beijing100190 China
We report flexible zero-index waveguides and devices whose loss is two orders of magnitude lower than the state of the art, enabling phase-error-free high-dense photonic integrated circuits for classical and quantum i... 详细信息
来源: 评论
Self-training through Classifier Disagreement for Cross-Domain Opinion Target Extraction
arXiv
收藏 引用
arXiv 2023年
作者: Sun, Kai Zhang, Richong Mensah, Samuel Aletras, Nikolaos Mao, Yongyi Liu, Xudong Beijing Advanced Innovation Center for Big Data and Brain Computing School of Computer Science and Engineering Beihang University Beijing China Department of Computer Science University of Sheffield Sheffield United Kingdom School of Electrical Engineering and Computer Science University of Ottawa Ottawa Canada
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining that aims to extract the targets (or aspects) on which opinions have been expressed. Recent work focus on cross-domain ... 详细信息
来源: 评论
A Channel-Augmented Multi-Domain Graph Convolutional Network for Fatigue Driving Detection
A Channel-Augmented Multi-Domain Graph Convolutional Network...
收藏 引用
Industrial Automation, Robotics and Control Engineering (IARCE), International Conference on
作者: Mingyi Sun Weigang Cui Yang Li Department of Automation Science and Electrical Engineering Beihang University Beijing China School of Engineering Medicine Beihang University Beijing China Department of Automation Science and Electrical Engineering State Key Laboratory of Virtual Reality Technology and Systems The Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
Electroencephalography (EEG) has emerged as a crucial cornerstone within the realm of brain-computer interface (BCI) applications, with its significance notably pronounced in the field of fatigue detection. However, t... 详细信息
来源: 评论
Characteristic Decomposition: From Regular Sets to Normal Sets
收藏 引用
Journal of Systems Science & Complexity 2019年 第1期32卷 37-46页
作者: MOU Chenqi WANG Dongming LMIB–School of Mathematics and Systems Science/Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University LMIB–SKLSDE–School of Mathematics and Systems Science/Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Centre National de la Recherche Scientifique
In this paper it is shown how to transform a regular triangular set into a normal triangular set by computing the W-characteristic set of their saturated ideal and an algorithm is proposed for decomposing any polynomi... 详细信息
来源: 评论
brain-inspired artificial intelligence research: A review
收藏 引用
Science China(Technological Sciences) 2024年 第8期67卷 2282-2296页
作者: WANG GuoYin BAO HuaNan LIU Qun ZHOU TianGang WU Si HUANG TieJun YU ZhaoFei LU CeWu GONG YiHong ZHANG ZhaoXiang HE Sheng Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and TelecommunicationsChongqing 400065China Key Laboratory of Cyberspace Big Data Intelligent Security Chongqing University of Posts and TelecommunicationsChongqing 400065China College of Computer and Information Science Chongqing Normal UniversityChongqing 401331China State Key Laboratory of Brain and Cognitive Science Institute of BiophysicsChinese Academy of SciencesBeijing 100101China School of Psychological and Cognitive Sciences Peking UniversityBeijing 100871China State Key Laboratory of Multimedia Information Processing School of Computer SciencePeking UniversityBeijing 100871China Department of Computer Science School of ElectronicsInformation and Electrical EngineeringShanghai Jiao Tong UniversityShanghai 200240China Faculty of Electronic and Information Engineering Xi’an Jiaotong UniversityXi’an 710049China The Center for Research on Intelligent Perception and Computing Institute of AutomationChinese Academy of SciencesBeijing 100190China Institute of Biophysics Chinese Academy of SciencesBeijing 100101China
Artificial intelligence(AI) systems surpass certain human intelligence abilities in a statistical sense as a whole, but are not yet the true realization of these human intelligence abilities and behaviors. There are d... 详细信息
来源: 评论