咨询与建议

限定检索结果

文献类型

  • 675 篇 期刊文献
  • 579 篇 会议

馆藏范围

  • 1,254 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 771 篇 工学
    • 521 篇 计算机科学与技术...
    • 435 篇 软件工程
    • 174 篇 信息与通信工程
    • 134 篇 生物工程
    • 94 篇 电气工程
    • 86 篇 控制科学与工程
    • 83 篇 电子科学与技术(可...
    • 75 篇 光学工程
    • 66 篇 生物医学工程(可授...
    • 44 篇 化学工程与技术
    • 43 篇 机械工程
    • 36 篇 仪器科学与技术
    • 27 篇 动力工程及工程热...
    • 23 篇 材料科学与工程(可...
    • 23 篇 土木工程
    • 22 篇 力学(可授工学、理...
  • 566 篇 理学
    • 277 篇 数学
    • 180 篇 物理学
    • 151 篇 生物学
    • 94 篇 统计学(可授理学、...
    • 47 篇 化学
    • 46 篇 地球物理学
    • 42 篇 系统科学
  • 208 篇 管理学
    • 111 篇 图书情报与档案管...
    • 106 篇 管理科学与工程(可...
    • 38 篇 工商管理
  • 58 篇 医学
    • 44 篇 临床医学
    • 42 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 28 篇 法学
    • 27 篇 社会学
  • 12 篇 农学
  • 11 篇 经济学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 42 篇 feature extracti...
  • 37 篇 deep learning
  • 35 篇 training
  • 33 篇 computational mo...
  • 32 篇 semantics
  • 28 篇 predictive model...
  • 27 篇 machine learning
  • 27 篇 data models
  • 26 篇 accuracy
  • 17 篇 cosmology
  • 16 篇 adaptation model...
  • 15 篇 reinforcement le...
  • 15 篇 convolution
  • 15 篇 artificial intel...
  • 15 篇 forecasting
  • 14 篇 analytical model...
  • 13 篇 object detection
  • 13 篇 deep neural netw...
  • 13 篇 task analysis
  • 13 篇 big data

机构

  • 63 篇 national enginee...
  • 53 篇 beijing advanced...
  • 52 篇 university of ch...
  • 40 篇 shenzhen researc...
  • 33 篇 chongqing key la...
  • 31 篇 institute of com...
  • 23 篇 peng cheng labor...
  • 22 篇 college of compu...
  • 21 篇 school of cyber ...
  • 20 篇 ifpu institute f...
  • 19 篇 shenyang institu...
  • 19 篇 icsc - centro na...
  • 18 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of data s...
  • 17 篇 institute of inf...
  • 17 篇 center for data ...
  • 16 篇 school of comput...
  • 16 篇 secure computing...
  • 16 篇 beijing advanced...

作者

  • 30 篇 shen linlin
  • 24 篇 huang qingming
  • 20 篇 xu qianqian
  • 19 篇 zhao weisheng
  • 17 篇 wu baoyuan
  • 15 篇 yang zhiyong
  • 15 篇 weisheng zhao
  • 14 篇 cao xiaochun
  • 14 篇 liu ya-feng
  • 14 篇 linlin shen
  • 12 篇 shang mingsheng
  • 12 篇 xin luo
  • 12 篇 li zhen
  • 12 篇 xu yong
  • 12 篇 li haizhou
  • 12 篇 jin hai
  • 11 篇 li yang
  • 11 篇 nurain ibrahim
  • 11 篇 trotta roberto
  • 11 篇 li qian

语言

  • 1,164 篇 英文
  • 80 篇 其他
  • 19 篇 中文
检索条件"机构=Big Data and Computing Institute"
1254 条 记 录,以下是11-20 订阅
排序:
Two kinds of average approximation accuracy
收藏 引用
CAAI Transactions on Intelligence Technology 2024年 第2期9卷 481-490页
作者: Qingzhao Kong Wanting Wang Dongxiao Zhang Wenbin Zhang Department of Science Jimei UniversityXiamenChina Digital Fujian Big Data Modeling and Intelligent Computing Institute Jimei UniversityXiamenChina Department of Computer Science Michigan Technological UniversityHoughtonMichiganUSA
Rough set theory places great importance on approximation accuracy,which is used to gauge how well a rough set model describes a target ***,traditional approximation accuracy has limitations since it varies with chang... 详细信息
来源: 评论
Algorithm for minimum bounding rectangle based on key point set  3
Algorithm for minimum bounding rectangle based on key point ...
收藏 引用
3rd International Conference on Artificial Intelligence, Automation, and High-Performance computing, AIAHPC 2023
作者: Liang, Fengqi Wang, Licai Yu, Jintao North China Institute of Computing Technology Big Data R&D Center China
This paper proposes a ship detection method based on contour extraction networks and minimum bounding box generation algorithms. The proposed method utilizes contour extraction networks to extract the contour of the s... 详细信息
来源: 评论
Rough set model based on variable universe
收藏 引用
CAAI Transactions on Intelligence Technology 2022年 第3期7卷 503-511页
作者: Qingzhao Kong Xueer Chang Department of Science Jimei UniversityXiamenChina Digital Fujian Big Data Modeling and Intelligent Computing Institute XiamenChina
Rough set theory has a very good effect in information processing and knowledge *** an information table,the current scholars regard all objects as a universe,and then establish various rough set ***,in the analysis o... 详细信息
来源: 评论
bigRU-DA: Based on Improved bigRU Multi-Target data Association Method  8
BiGRU-DA: Based on Improved BiGRU Multi-Target Data Associat...
收藏 引用
8th International Conference on Computer and Communication Systems, ICCCS 2023
作者: Wu, Guangsheng Wang, Licai Hu, Xun Luo, Qibin Guo, Dongliang North China Institute of Computing Technology Big Data Research and Development Center Beijing China
Trajectory data association algorithm is an important part of multi-target tracking method. Traditional association methods require priori information such as target motion model and clutter density to conduct associa... 详细信息
来源: 评论
Resource investment for DDoS attack resistant SDN: a practical assessment
收藏 引用
Science China(Information Sciences) 2023年 第7期66卷 112-129页
作者: Bin YUAN Fan ZHANG Jun WAN Huan ZHAO Shui YU Deqing ZOU Qiangsheng HUA Hai JIN School of Cyber Science and Engineering Huazhong University of Science and Technology National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Hubei Engineering Research Center on Big Data Security Shenzhen Huazhong University of Science and Technology Research Institute School of Computer Science and Technology Huazhong University of Science and Technology Cluster and Grid Computing Lab School of Computer Science University of Technology Sydney
Software-defined networks(SDNs) present a novel network architecture that is widely used in various datacenters. However, SDNs also suffer from many types of security threats, among which a distributed denial of servi... 详细信息
来源: 评论
IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage System for Large Language Model Inference  23
IMPRESS: An Importance-Informed Multi-Tier Prefix KV Storage...
收藏 引用
23rd USENIX Conference on File and Storage Technologies, FAST 2025
作者: Chen, Weijian He, Shuibing Qu, Haoyang Zhang, Ruidong Yang, Siling Chen, Ping Zheng, Yi Huai, Baoxing Chen, Gang The State Key Laboratory of Blockchain and Data Security Zhejiang University China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Huawei Cloud China
Modern advanced large language model (LLM) applications often prepend long contexts before user queries to improve model output quality. These contexts frequently repeat, either partially or fully, across multiple que...
来源: 评论
Blockchain-Enabled Cybersecurity Provision for Scalable Heterogeneous Network:A Comprehensive Survey
收藏 引用
Computer Modeling in Engineering & Sciences 2024年 第1期138卷 43-123页
作者: Md.Shohidul Islam Md.Arafatur Rahman Mohamed Ariff Bin Ameedeen Husnul Ajra Zahian Binti Ismail Jasni Mohamad Zain Faculty of Computing Universiti Malaysia PahangKuantan26600Malaysia School of Engineering Computing&Mathematical SciencesUniversity ofWolverhamptonWolverhamptonUK Institute for Big Data Analytics and Artificial Intelligence(IBDAAI) Komplek Al-KhawarizmiUniversiti Teknologi MARAShah AlamSelangor40450Malaysia
Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance,transportation,healthcare,education,... 详细信息
来源: 评论
Distributed Truss Computation in Dynamic Graphs
收藏 引用
Tsinghua Science and Technology 2023年 第5期28卷 873-887页
作者: Ziwei Mo Qi Luo Dongxiao Yu Hao Sheng Jiguo Yu Xiuzhen Cheng School of Computer Science and Technology Shandong UniversityQingdao 266200China State Key Laboratory of Software Development Environment School of Computer Science and Engineering and the Beijing Advanced Innovation Center for Big Data and Brain ComputingBeihang UniversityBeijing 100191China Big Data Institute Qilu University of Technology(Shandong Academy of Sciences)Jinan 250353China
Large-scale graphs usually exhibit global sparsity with local cohesiveness,and mining the representative cohesive subgraphs is a fundamental problem in graph *** k-truss is one of the most commonly studied cohesive su... 详细信息
来源: 评论
MMD GRAPH KERNEL: EFFECTIVE METRIC LEARNING FOR GRAPHS VIA MAXIMUM MEAN DISCREPANCY  12
MMD GRAPH KERNEL: EFFECTIVE METRIC LEARNING FOR GRAPHS VIA M...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Sun, Yan Fan, Jicong School of Data Science The Chinese University of Hong Kong Shenzhen China School of Computing National University of Singapore Singapore Shenzhen Research Institute of Big Data Shenzhen China
This paper focuses on graph metric learning. First, we present a class of maximum mean discrepancy (MMD) based graph kernels, called MMD-GK. These kernels are computed by applying MMD to the node representations of tw... 详细信息
来源: 评论
DEEP ORTHOGONAL HYPERSPHERE COMPRESSION FOR ANOMALY DETECTION  12
DEEP ORTHOGONAL HYPERSPHERE COMPRESSION FOR ANOMALY DETECTIO...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Zhang, Yunhe Sun, Yan Cai, Jinyu Fan, Jicong School of Data Science The Chinese University of Hong Kong Shenzhen China Shenzhen Research Institute of Big Data Shenzhen China School of Computing National University of Singapore Singapore Institute of Data Science National University of Singapore Singapore
Many well-known and effective anomaly detection methods assume that a reasonable decision boundary has a hypersphere shape, which however is difficult to obtain in practice and is not sufficiently compact, especially ... 详细信息
来源: 评论