咨询与建议

限定检索结果

文献类型

  • 671 篇 期刊文献
  • 579 篇 会议

馆藏范围

  • 1,250 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 768 篇 工学
    • 518 篇 计算机科学与技术...
    • 433 篇 软件工程
    • 173 篇 信息与通信工程
    • 134 篇 生物工程
    • 92 篇 电气工程
    • 86 篇 控制科学与工程
    • 83 篇 电子科学与技术(可...
    • 75 篇 光学工程
    • 66 篇 生物医学工程(可授...
    • 44 篇 化学工程与技术
    • 43 篇 机械工程
    • 36 篇 仪器科学与技术
    • 27 篇 动力工程及工程热...
    • 23 篇 材料科学与工程(可...
    • 23 篇 土木工程
    • 22 篇 建筑学
  • 563 篇 理学
    • 275 篇 数学
    • 179 篇 物理学
    • 151 篇 生物学
    • 92 篇 统计学(可授理学、...
    • 47 篇 化学
    • 46 篇 地球物理学
    • 42 篇 系统科学
  • 208 篇 管理学
    • 111 篇 图书情报与档案管...
    • 105 篇 管理科学与工程(可...
    • 37 篇 工商管理
  • 58 篇 医学
    • 44 篇 临床医学
    • 42 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 27 篇 法学
    • 27 篇 社会学
  • 12 篇 农学
  • 10 篇 经济学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 43 篇 feature extracti...
  • 37 篇 deep learning
  • 35 篇 training
  • 33 篇 computational mo...
  • 32 篇 semantics
  • 28 篇 predictive model...
  • 28 篇 machine learning
  • 28 篇 data models
  • 27 篇 accuracy
  • 16 篇 cosmology
  • 16 篇 adaptation model...
  • 15 篇 reinforcement le...
  • 15 篇 convolution
  • 15 篇 artificial intel...
  • 15 篇 forecasting
  • 14 篇 analytical model...
  • 13 篇 deep neural netw...
  • 13 篇 task analysis
  • 13 篇 big data
  • 13 篇 data mining

机构

  • 62 篇 national enginee...
  • 53 篇 university of ch...
  • 53 篇 beijing advanced...
  • 40 篇 shenzhen researc...
  • 33 篇 chongqing key la...
  • 32 篇 institute of com...
  • 23 篇 peng cheng labor...
  • 22 篇 college of compu...
  • 21 篇 school of cyber ...
  • 19 篇 shenyang institu...
  • 19 篇 icsc - centro na...
  • 19 篇 ifpu institute f...
  • 18 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of data s...
  • 17 篇 institute of inf...
  • 17 篇 center for data ...
  • 16 篇 school of comput...
  • 16 篇 secure computing...
  • 16 篇 beijing advanced...

作者

  • 30 篇 shen linlin
  • 24 篇 huang qingming
  • 20 篇 xu qianqian
  • 19 篇 zhao weisheng
  • 17 篇 wu baoyuan
  • 15 篇 yang zhiyong
  • 15 篇 weisheng zhao
  • 14 篇 cao xiaochun
  • 14 篇 liu ya-feng
  • 14 篇 linlin shen
  • 12 篇 shang mingsheng
  • 12 篇 xin luo
  • 12 篇 li zhen
  • 12 篇 xu yong
  • 12 篇 li haizhou
  • 12 篇 jin hai
  • 11 篇 li yang
  • 11 篇 nurain ibrahim
  • 11 篇 trotta roberto
  • 11 篇 li qian

语言

  • 1,161 篇 英文
  • 79 篇 其他
  • 19 篇 中文
检索条件"机构=Big Data and Computing Institute"
1250 条 记 录,以下是201-210 订阅
排序:
Extracting High-order Connectivity of EEG-based Dynamic Functional Connectivity Networks for Diagnosis of Major Depressive Disorder  24
Extracting High-order Connectivity of EEG-based Dynamic Func...
收藏 引用
4th Asia-Pacific Artificial Intelligence and big data Forum, AIBDF 2024
作者: Zhao, Feng Fan, Wenxuan Han, Zhongwei Chen, Hongyu School of Computer Science and Technology Shandong Technology and Business University Shandong Yantai China Yantai Key Laboratory of Big Data Modeling and Intelligent Computing Shandong Yantai China Immersion Technology and Evaluation Shandong Engineering Research Center Shandong Yantai China Information Engineering College Yantai Institute of Technology Shandong Yantai China Shandong Technology and Business University Shandong Yantai China
Functional connectivity networks (FCNs), particularly those utilizing the phase lag index (PLI) method, have been instrumental in elucidating the pathological features of Major Depressive Disorder (MDD) by assessing t... 详细信息
来源: 评论
Modulated Spike-Time Dependent Plasticity (Stdp)-Based Learning for Spiking Neural Network (Snn): A Review
SSRN
收藏 引用
SSRN 2024年
作者: Rahman, Nazeerah Abdul Yusoff, Nooraini Khamis, Nurulaqilla Faculty of Data Science & Computing Universiti Malaysia Kelantan UMK City Campus Pengkalan Chepa Malaysia Institute for Artificial Intelligence & Big Data Universiti Malaysia Kelantan City Campus Pengkalan Chepa Kelantan Kota Bharu16100 Malaysia
Computational models called Spiking Neural Networks (SNNs) are modelled after the intricate information processing discovered in the brain. A key learning principle, spike-time dependent plasticity (STDP), controls ho... 详细信息
来源: 评论
A Self-decoupled Interpretable Prediction Framework for Highly-Variable Cloud Workloads  28th
A Self-decoupled Interpretable Prediction Framework for Hig...
收藏 引用
28th International Conference on database Systems for Advanced Applications, DASFAA 2023
作者: Wang, Bingchao Shi, Xiaoyu Shang, Mingsheng Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing400714 China Chongqing School University of Chinese Academy of Sciences Chongqing400714 China Chongqing Key Laboratory of Computational Intelligence Chongqing University of Posts and Telecommunications Chongqing400065 China
Cloud workloads prediction plays a crucial role in the various tasks of cloud computing, such as resource scheduling, performance optimization, cost management, etc. However, current time series prediction methods suf... 详细信息
来源: 评论
Web-Based Optimization and Expansion of Multimodal High School Entrance Examination data Visualization
Web-Based Optimization and Expansion of Multimodal High Scho...
收藏 引用
Information and Communication Technology (ICTech), International Conference of
作者: Wei Zhang Duan Jian HongLiang Wang YongHong Zhang Shengyang Institute of Computing Technology University of Chinese Academy of Sciences Beijing China Big Data Technology and Cognitive Intelligence Laboratory Shandong University Beijing China
The reform of the new college entrance examination system makes students and their parents pay more attention to the feasibility and accuracy of the college entrance examination. The college entrance examination infor...
来源: 评论
Rethinking the visual cues in audio-visual speaker extraction
arXiv
收藏 引用
arXiv 2023年
作者: Li, Junjie Ge, Meng Pan, Zexu Cao, Rui Wang, Longbiao Dang, Jianwu Zhang, Shiliang Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing Tianjin University Tianjin China Department of Electrical and Computer Engineering National University of Singapore Singapore Institute of Data Science National University of Singapore Singapore Shenzhen Research Institute of Big Data Shenzhen China
The Audio-Visual Speaker Extraction (AVSE) algorithm employs parallel video recording to leverage two visual cues, namely speaker identity and synchronization, to enhance performance compared to audio-only algorithms.... 详细信息
来源: 评论
bbTopk: Bandwidth-Aware Sparse Allreduce with Blocked Sparsification for Efficient Distributed Training
bbTopk: Bandwidth-Aware Sparse Allreduce with Blocked Sparsi...
收藏 引用
International Conference on Distributed computing Systems
作者: Chang Chen Min Li Chao Yang Center for Data Science Peking University School of Mathematics Sciences Peking University National Engineering Laboratory for Big Data Analysis and Applications Peking University PKU-Changsha Institute for Computing and Digital Economy
Communication overhead is one of the major bottlenecks for large-scale distributed model training. Sparse gradient has been proposed to reduce the communication volume dramatically without affecting the model accuracy...
来源: 评论
Early Detection of Activity in Untrimmed Videos Using Dense Optical Flow and Deep Neural Network  5
Early Detection of Activity in Untrimmed Videos Using Dense ...
收藏 引用
5th International Conference on Electronics, Communication and Aerospace Technology, ICECA 2021
作者: Poonkodi, M. Vadivu, G. SRM Institute of Science and Technology Department of Computer Science and Engineering Chennai India Big Data Analytics School of Computing SRM Institute of Science and Technology Chennai India
Computer Vision is playing aremarkable role right from essentials to entertainment and thus trying to turn computer as a 'seeing' machine. Having widespread applications in most of the real world domain like h... 详细信息
来源: 评论
Research on Technologies in data Fabric
Research on Technologies in Data Fabric
收藏 引用
IEEE International Conference on Trust, Security and Privacy in computing and Communications (TrustCom)
作者: Qingyuan Hu Zheng Yin Tao Tao Jibin Wang Zhuo Chen Bohuan Ai Yu Liu Chongzhou Liu China Mobile Information Technology Center Beijing China Cloud Computing and Big Data Research Institute China Academy of Information and Communications Technology Beijing China
With the continuous advancement of technologies like big data, artificial intelligence, and cloud computing, enterprises are increasingly encountering challenges related to the heterogeneity of data from various sourc... 详细信息
来源: 评论
ReconBoost: Boosting Can Achieve Modality Reconcilement  41
ReconBoost: Boosting Can Achieve Modality Reconcilement
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Hua, Cong Xu, Qianqian Bao, Shilong Yang, Zhiyong Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
This paper explores a novel multi-modal alternating learning paradigm pursuing a reconciliation between the exploitation of uni-modal features and the exploration of cross-modal interactions. This is motivated by the ... 详细信息
来源: 评论
CAAVM-TransUNet: Integrating Context Anchor Attention with Transformer U-Net for Single Image Dehazing
CAAVM-TransUNet: Integrating Context Anchor Attention with T...
收藏 引用
International Conference on Computer and Communications (ICCC)
作者: Hongwei Zeng Lijun Fu Jin Li Xu Li Xiangdong He Shenyang Institute of Computing Technology Chinese Academy of Sciences Shenyang China Laboratory of Big Data and Artificial Intelligence Technolgy Shandong University Jinan China Institute of Future Artificial Intelligence Technology and Innovative Applications Beijing China
Image dehazing has always been a challenging visual task. Most of the existing image dehazing algorithms are constructed based on convolutional neural networks, which perform very well in capturing local features and ... 详细信息
来源: 评论