咨询与建议

限定检索结果

文献类型

  • 681 篇 期刊文献
  • 601 篇 会议

馆藏范围

  • 1,282 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 799 篇 工学
    • 540 篇 计算机科学与技术...
    • 448 篇 软件工程
    • 175 篇 信息与通信工程
    • 138 篇 生物工程
    • 97 篇 电气工程
    • 95 篇 控制科学与工程
    • 83 篇 电子科学与技术(可...
    • 80 篇 光学工程
    • 70 篇 生物医学工程(可授...
    • 44 篇 化学工程与技术
    • 43 篇 机械工程
    • 36 篇 仪器科学与技术
    • 26 篇 动力工程及工程热...
    • 25 篇 土木工程
    • 24 篇 建筑学
    • 23 篇 材料科学与工程(可...
  • 578 篇 理学
    • 281 篇 数学
    • 185 篇 物理学
    • 154 篇 生物学
    • 93 篇 统计学(可授理学、...
    • 50 篇 化学
    • 47 篇 地球物理学
    • 42 篇 系统科学
  • 214 篇 管理学
    • 114 篇 图书情报与档案管...
    • 108 篇 管理科学与工程(可...
    • 39 篇 工商管理
  • 61 篇 医学
    • 49 篇 临床医学
    • 44 篇 基础医学(可授医学...
    • 29 篇 药学(可授医学、理...
  • 29 篇 法学
    • 28 篇 社会学
  • 12 篇 农学
  • 10 篇 经济学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 45 篇 feature extracti...
  • 40 篇 deep learning
  • 35 篇 training
  • 34 篇 computational mo...
  • 32 篇 semantics
  • 28 篇 predictive model...
  • 28 篇 machine learning
  • 28 篇 accuracy
  • 28 篇 data models
  • 17 篇 reinforcement le...
  • 16 篇 convolution
  • 16 篇 cosmology
  • 16 篇 adaptation model...
  • 15 篇 forecasting
  • 14 篇 analytical model...
  • 14 篇 artificial intel...
  • 13 篇 deep neural netw...
  • 13 篇 task analysis
  • 13 篇 big data
  • 13 篇 data mining

机构

  • 67 篇 national enginee...
  • 55 篇 university of ch...
  • 53 篇 beijing advanced...
  • 40 篇 shenzhen researc...
  • 34 篇 chongqing key la...
  • 34 篇 institute of com...
  • 24 篇 peng cheng labor...
  • 23 篇 college of compu...
  • 21 篇 school of cyber ...
  • 20 篇 center for data ...
  • 19 篇 shenyang institu...
  • 19 篇 icsc - centro na...
  • 19 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of data s...
  • 18 篇 ifpu institute f...
  • 17 篇 school of comput...
  • 17 篇 institute of inf...
  • 16 篇 secure computing...
  • 16 篇 guangdong provin...

作者

  • 33 篇 shen linlin
  • 25 篇 huang qingming
  • 21 篇 xu qianqian
  • 19 篇 zhao weisheng
  • 17 篇 wu baoyuan
  • 16 篇 yang zhiyong
  • 15 篇 weisheng zhao
  • 14 篇 cao xiaochun
  • 14 篇 liu ya-feng
  • 14 篇 linlin shen
  • 12 篇 shang mingsheng
  • 12 篇 xin luo
  • 12 篇 li zhen
  • 12 篇 xu yong
  • 12 篇 li haizhou
  • 12 篇 jin hai
  • 11 篇 li yang
  • 11 篇 nurain ibrahim
  • 11 篇 trotta roberto
  • 11 篇 li qian

语言

  • 1,148 篇 英文
  • 122 篇 其他
  • 19 篇 中文
检索条件"机构=Big Data and Computing Institute"
1282 条 记 录,以下是461-470 订阅
排序:
Task-Aware Dynamic Transformer for Efficient Arbitrary-Scale Image Super-Resolution
arXiv
收藏 引用
arXiv 2024年
作者: Xu, Tianyi Zhou, Yijie Hu, Xiaotao Zhang, Kai Zhang, Anran Qiu, Xingye Xu, Jun School of Statistics and Data Science Nankai University Tianjin China College of Computer Science Nankai University Tianjin China School of Intelligence Science and Technology Nanjing University Suzhou China Tencent Data Platform Beijing China Zhejiang University Hangzhou China Systems Engineering Research Institute China State Shipbuilding Corporation Limited Beijing China Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen China
Arbitrary-scale super-resolution (ASSR) aims to learn a single model for image super-resolution at arbitrary magnifying scales. Existing ASSR networks typically comprise an off-the-shelf scale-agnostic feature extract...
来源: 评论
QoS-based Beamforming and Compression Design for Cooperative Cellular Networks via Lagrangian Duality
arXiv
收藏 引用
arXiv 2023年
作者: Fan, Xilai Liu, Ya-Feng Liu, Liang Chang, Tsung-Hui State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong School of Science and Engineering The Chinese University of Hong Kong Shenzhen Research Institute of Big Data Shenzhen Shenzhen China
This paper considers the quality-of-service (QoS)based joint beamforming and compression design problem in the downlink cooperative cellular network, where multiple relay-like base stations (BSs), connected to the cen... 详细信息
来源: 评论
Fast Robot Hierarchical Exploration Based on Deep Reinforcement Learning
Fast Robot Hierarchical Exploration Based on Deep Reinforcem...
收藏 引用
International Wireless Communications and Mobile computing Conference, IWCMC
作者: Shun Zuo Jianwei Niu Lu Ren Zhenchao Ouyang State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC) Beihang University Beijing China Beihang Hangzhou Innovation Institute Yuhang Beihang University Beijing China
This paper investigates the use of reinforcement learning for autonomous exploration in an unknown environment. Autonomous exploration is crucial in many situations, such as urban search, security inspection, environm...
来源: 评论
DMSACNN: Deep Multiscale Attentional Convolutional Neural Network for EEG-Based Motor Decoding
收藏 引用
IEEE Journal of Biomedical and Health Informatics 2025年 PP卷 PP页
作者: Liu, Ke Xing, Xin Yang, Tao Yu, Zhuliang Xiao, Bin Wang, Guoyin Wu, Wei Chongqing University of Posts and Telecommunications School of Computer Science and Technology Chongqing400065 China Chongqing University of Posts and Telecommunications Key Laboratory of Big Data Intelligent Computing China Chongqing University of Posts and Telecommunications Key Laboratory of Cyberspace Big Data Intelligent Security of Ministry of Education China South China University of Technology College of Automation Science and Engineering Guangzhou510641 China Chongqing Normal University National Center for Applied Mathematics in Chongqing Chongqing401331 China Shanghai Jiao Tong University School of Medicine Songjiang Hospital Songjiang Research Institute Shanghai Key Laboratory of Emotions and Affective Disorders Shanghai201600 China
Objective: Accurate decoding of electroencephalogram (EEG) signals has become more significant for the brain-computer interface (BCI). Specifically, motor imagery and motor execution (MI/ME) tasks enable the control o... 详细信息
来源: 评论
Block-Level Interference Exploitation Precoding without Symbol-by-Symbol Optimization
Block-Level Interference Exploitation Precoding without Symb...
收藏 引用
IEEE Conference on Wireless Communications and Networking
作者: Ang Li Chao Shen Xuewen Liao Christos Masouros A. Lee Swindlehurst School of Information and Communications Engineering Xi’an Jiaotong University Xi’an China Shenzhen Research Institute of Big Data Shenzhen China Department of Electronic and Electrical Engineering University College London London UK Center for Pervasive Communications and Computing University of California Irvine USA
Symbol-level precoding (SLP) based on the concept of constructive interference (CI) is shown to be superior to traditional block-level precoding (BLP), however at the cost of a symbol-by-symbol optimization during the... 详细信息
来源: 评论
Graph Regularized Nonnegative Latent Factor Analysis Model for Temporal Link Prediction in Cryptocurrency Transaction Networks  19
Graph Regularized Nonnegative Latent Factor Analysis Model f...
收藏 引用
19th IEEE International Conference on Networking, Sensing and Control, ICNSC 2022
作者: Zhou, Yue Liu, ZhiGang Yuan, Ye Chongqing University of Posts and Telecommunications School of Computer Science and Technology Chongqing400065 China Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing400714 China The Chongqing School University of Chinese Academy of Sciences Chongqing400714 China Southwest University College of Computer and Information Science Chongqing400715 China
With the development of blockchain technology, a cryptocurrency based on blockchain technology is becoming more and more popular. The huge cryptocurrency transaction network has therefore received widespread attention... 详细信息
来源: 评论
Joint Compression and Deadline Optimization for Communication-Efficient Federated Edge Learning
Joint Compression and Deadline Optimization for Communicatio...
收藏 引用
IEEE Globecom Workshops
作者: Maojun Zhang Zhijie Cai Dongzhu Liu Richeng Jin Guangxu Zhu Caijun Zhong College of Information Science and Electronic Engineering Zhejiang University Hangzhou China Shenzhen Research Institute of Big Data Shenzhen China School of Computing Science University of Glasgow Peng Cheng Laboratory Shenzhen Guangdong China Pazhou Laboratory (Huangpu) Guangzhou Guangdong China
The federated edge learning (FEEL) framework is a popular approach for privacy-preserving collaborative model training, where edge devices and the server exchange learning updates frequently. In this vein, FEEL can ca...
来源: 评论
Adaptive Latent Factor Analysis via Generalized Momentum-Incorporated Particle Swarm Optimization  19
Adaptive Latent Factor Analysis via Generalized Momentum-Inc...
收藏 引用
19th IEEE International Conference on Networking, Sensing and Control, ICNSC 2022
作者: Chen, Jiufang Yuan, Ye School of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing400065 China Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing400714 China Chongqing School University of Chinese Academy of Sciences Chongqing400714 China College of Computer and Information Science Southwest University Chongqing400715 China
Stochastic gradient descent (SGD) algorithm is an effective learning strategy to build a latent factor analysis (LFA) model on a high-dimensional and incomplete (HDI) matrix. A particle swarm optimization (PSO) algori... 详细信息
来源: 评论
RVPD: An Automated System for Calculating the Tortuosity and Bifurcation Angles of Retinal Vessels to Predict Diseases
RVPD: An Automated System for Calculating the Tortuosity and...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Guangzhengao Yang Xingyu Luo Jie Zhao Fangfang Fan Haoshen Li Bin Dong Li Zhang Yan Zhang Center for Data Science Peking University China Department of Cardiology Peking University First Hospital China National Engineering Laboratory for Big Data Analysis and Applications Peking University China Peking University Changsha Institute for Computing and Digital Economy China Beijing International Center for Mathematical Research Peking University China Center for Machine Learning Research Peking University China National Biomedical Imaging Center Peking University China
Hypertension and diabetes are known to potentially cause morphological changes in the retinal capillary system, yet quantifying these changes presents significant challenges. This research addresses this issue by desi... 详细信息
来源: 评论
A Comparative Study of HiveQL and SparkSQL Query Performance in a Cluster Environment
A Comparative Study of HiveQL and SparkSQL Query Performance...
收藏 引用
Recent Advances and Innovations in Engineering (ICRAIE)
作者: Muhammad Hafiiz Yahya Azlan Ismail School of Computing Sciences College of Computing Informatics and Mathematics Universiti Teknologi MARA (UiTM) Shah Alam Selangor Malaysia Magicell Sdn. Bhd. Bukit Jelutong Business and Technology Park Shah Alam Selangor Malaysia Institute for Big Data Analytics and Artificial Intelligence Universiti Teknologi MARA (UiTM) Shah Alam Selangor Malaysia
This paper conducts a rigorous comparative analysis of query processing in a cluster environment, employing HiveQL and SparkSQL. Despite their shared SQL-like querying capabilities, their unique architectures and opti...
来源: 评论