咨询与建议

限定检索结果

文献类型

  • 675 篇 期刊文献
  • 579 篇 会议

馆藏范围

  • 1,254 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 771 篇 工学
    • 521 篇 计算机科学与技术...
    • 435 篇 软件工程
    • 174 篇 信息与通信工程
    • 134 篇 生物工程
    • 94 篇 电气工程
    • 86 篇 控制科学与工程
    • 83 篇 电子科学与技术(可...
    • 75 篇 光学工程
    • 66 篇 生物医学工程(可授...
    • 44 篇 化学工程与技术
    • 43 篇 机械工程
    • 36 篇 仪器科学与技术
    • 27 篇 动力工程及工程热...
    • 23 篇 材料科学与工程(可...
    • 23 篇 土木工程
    • 22 篇 力学(可授工学、理...
  • 566 篇 理学
    • 277 篇 数学
    • 180 篇 物理学
    • 151 篇 生物学
    • 94 篇 统计学(可授理学、...
    • 47 篇 化学
    • 46 篇 地球物理学
    • 42 篇 系统科学
  • 208 篇 管理学
    • 111 篇 图书情报与档案管...
    • 106 篇 管理科学与工程(可...
    • 38 篇 工商管理
  • 58 篇 医学
    • 44 篇 临床医学
    • 42 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 28 篇 法学
    • 27 篇 社会学
  • 12 篇 农学
  • 11 篇 经济学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 42 篇 feature extracti...
  • 37 篇 deep learning
  • 35 篇 training
  • 33 篇 computational mo...
  • 32 篇 semantics
  • 28 篇 predictive model...
  • 27 篇 machine learning
  • 27 篇 data models
  • 26 篇 accuracy
  • 17 篇 cosmology
  • 16 篇 adaptation model...
  • 15 篇 reinforcement le...
  • 15 篇 convolution
  • 15 篇 artificial intel...
  • 15 篇 forecasting
  • 14 篇 analytical model...
  • 13 篇 object detection
  • 13 篇 deep neural netw...
  • 13 篇 task analysis
  • 13 篇 big data

机构

  • 63 篇 national enginee...
  • 53 篇 beijing advanced...
  • 52 篇 university of ch...
  • 40 篇 shenzhen researc...
  • 33 篇 chongqing key la...
  • 31 篇 institute of com...
  • 23 篇 peng cheng labor...
  • 22 篇 college of compu...
  • 21 篇 school of cyber ...
  • 20 篇 ifpu institute f...
  • 19 篇 shenyang institu...
  • 19 篇 icsc - centro na...
  • 18 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of data s...
  • 17 篇 institute of inf...
  • 17 篇 center for data ...
  • 16 篇 school of comput...
  • 16 篇 secure computing...
  • 16 篇 beijing advanced...

作者

  • 30 篇 shen linlin
  • 24 篇 huang qingming
  • 20 篇 xu qianqian
  • 19 篇 zhao weisheng
  • 17 篇 wu baoyuan
  • 15 篇 yang zhiyong
  • 15 篇 weisheng zhao
  • 14 篇 cao xiaochun
  • 14 篇 liu ya-feng
  • 14 篇 linlin shen
  • 12 篇 shang mingsheng
  • 12 篇 xin luo
  • 12 篇 li zhen
  • 12 篇 xu yong
  • 12 篇 li haizhou
  • 12 篇 jin hai
  • 11 篇 li yang
  • 11 篇 nurain ibrahim
  • 11 篇 trotta roberto
  • 11 篇 li qian

语言

  • 1,164 篇 英文
  • 80 篇 其他
  • 19 篇 中文
检索条件"机构=Big Data and Computing Institute"
1254 条 记 录,以下是41-50 订阅
排序:
Matching Knowledge Graphs in Entity Embedding Spaces: An Experimental Study [Extended Abstract]  40
Matching Knowledge Graphs in Entity Embedding Spaces: An Exp...
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Zeng, Weixin Zhao, Xiang Tan, Zhen Tang, Jiuyang Cheng, Xueqi National University of Defense Technology Laboratory for Big Data and Decision China National University of Defense Technology Science and Technology on Information Systems Engineering Laboratory China Institute of Computing Technology CAS China
Entity alignment (EA) identifies equivalent entities that locate in different knowledge graphs (KGs), and has attracted growing research interests over the last few years with the advancement of KG embedding technique... 详细信息
来源: 评论
A Person-job Matching Method Based on BM25 and Pre-Trained Language Model  6
A Person-job Matching Method Based on BM25 and Pre-Trained L...
收藏 引用
6th International Conference on Machine Learning and Natural Language Processing, MLNLP 2023
作者: Tang, Jiaqi Chen, Heyun Chen, Zifan Pan, Jiahua He, Yijiang Zhao, Jie Li, Zhen PKU-Changsha Institute for Computing and Digital Economy Changsha China Center for Data Science Peking University Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China
To address the inefficiency of traditional methods for person-job matching and the lack of interpretability of deep learning approaches, a novel approach for person-job matching based on BM25 and pre-Trained language ... 详细信息
来源: 评论
An Extended-Isomap for high-dimensional data accuracy and efficiency: a comprehensive survey
收藏 引用
Multimedia Tools and Applications 2024年 第38期83卷 85523-85574页
作者: Yousaf, Mahwish Shakoor Khan, Muhammad Saadat Ullah, Shamsher Institute of Intelligence Machine Hefei Institutes of Physical Science Chinese Academy of Sciences Anhui Hefei230027 China Key Laboratory of Materials Physics Institute of Solid-State Physics Chinese Academy of Sciences Anhui Hefei230027 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Guangdong Shenzhen518060 China
Manifold learning is a widely adopted nonlinear dimensionality reduction technique employed to discover low-dimensional representations from high-dimensional data and to explore the intrinsic data structure. It encomp... 详细信息
来源: 评论
3D-GRES: Generalized 3D Referring Expression Segmentation  24
3D-GRES: Generalized 3D Referring Expression Segmentation
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Wu, Changli Liu, Yihang Ji, Jiayi Ma, Yiwei Wang, Haowei Luo, Gen Ding, Henghui Sun, Xiaoshuai Ji, Rongrong Key Laboratory of Multimedia Trusted Perception and Efficient Computing Ministry of Education of China Xiamen University Xiamen China Youtu Lab Tencent Shanghai China Institute of Big Data Fudan University Shanghai China
3D Referring Expression Segmentation (3D-RES) is dedicated to segmenting a specific instance within a 3D space based on a natural language description. However, current approaches are limited to segmenting a single ta... 详细信息
来源: 评论
Ship Type Recognition Method Based on Multi-view Learning  3
Ship Type Recognition Method Based on Multi-view Learning
收藏 引用
3rd International Conference on Artificial Intelligence, Automation, and High-Performance computing, AIAHPC 2023
作者: Li, Tianjiao Liu, Zhonglin Wang, Licai Yu, Jintao North China Institute of Computing Technology Smart Plat Rd Department Beijing100083 China China Judicial Big Data Research Institute Co. Ltd. Beijing100043 China
Aiming at the problem of low reliability of ship model recognition from remote sensing images, we propose a ship model recognition method based on multi-view learning. Firstly, the multi-view feature data is construct... 详细信息
来源: 评论
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerators  31
GoPIM: GCN-Oriented Pipeline Optimization for PIM Accelerato...
收藏 引用
31st IEEE International Symposium on High Performance Computer Architecture, HPCA 2025
作者: Yang, Siling He, Shuibing Wang, Wenjiong Yin, Yanlong Wu, Tong Chen, Weijian Zhang, Xuechen Sun, Xian-He Feng, Dan The State Key Laboratory of Blockchain and Data Security Zhejiang University China Zhejiang Lab China Institute of Blockchain and Data Security China Zhejiang Key Laboratory of Big Data Intelligent Computing China Washington State University Vancouver United States Illinois Institute of Technology United States Huazhong University of Science and Technology China Wuhan National Laboratory for Optoelectronics China
Graph convolutional networks (GCNs) are popular for a variety of graph learning tasks. ReRAM-based processing-in-memory (PIM) accelerators are promising to expedite GCN training owing to their in-situ computing capabi... 详细信息
来源: 评论
A Local Regression-Based SLA-Aware Energy-Efficient Virtual Machine Consolidation Algorithm in data Centers  9
A Local Regression-Based SLA-Aware Energy-Efficient Virtual ...
收藏 引用
9th International Conference on big data computing and Communications, bigCom 2023
作者: Wu, Xiaodong Wang, Ronghai Lin, Guoxin Quanzhou Normal University School of Mathmatics and Computer Science China Fujian Province University Fujian Provincial Key Laboratory of Data-Intensive Computing Key Laboratory of Intelligent Computing and Information Processing Fujian China Provincial Big Data Research Institute of Intelligent Manufacturing Quanzhou China
Virtual Machine Consolidation (VMC) is an effective means to improve the resource utilization and reduce energy consumption of data centers. However, the VMC optimization that only considers energy consumption may lea... 详细信息
来源: 评论
On RNN-Based k-WTA Models With Time-Dependent Inputs
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第11期9卷 2034-2036页
作者: Mei Liu Mingsheng Shang the Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent TechnologyChinese Academy of SciencesChongqing 400714 the Chongqing School University of Chinese Academy of SciencesChongqing 400714China
Dear editor,This letter identifies two weaknesses of state-of-the-art k-winnerstake-all(k-WTA)models based on recurrent neural networks(RNNs)when considering time-dependent inputs,i.e.,the lagging error and the infeas... 详细信息
来源: 评论
Large Language Model Based on Full-Text Retrieval for Temporal Knowledge Q&A Approach
Large Language Model Based on Full-Text Retrieval for Tempor...
收藏 引用
Artificial Intelligence, Networking and Information Technology (AINIT), International Seminar on
作者: Zhidong Li Licai Wang Qibin Luo Silong Qiao Big data research and development center North China Institute of Computing Technology Beijing China
Knowledge Q&A is one of the hot research topics in the field of natural language processing, and temporal knowledge Q&A is a difficult area of Q&A reasoning because it also needs to consider the temporal r... 详细信息
来源: 评论
Policy Network-Based Dual-Agent Deep Reinforcement Learning for Multi-Resource Task Offloading in Multi-Access Edge Cloud Networks
收藏 引用
China Communications 2024年 第4期21卷 53-73页
作者: Feng Chuan Zhang Xu Han Pengchao Ma Tianchun Gong Xiaoxue School of Communications and Information Engineering Chongqing University of Posts and TelecommunicationsChongqing 400065China Institute of Intelligent Communication and Network Security Chongqing University of Posts and TelecommunicationsChongqing 400065China Key Laboratory of Big Data Intelligent Computing Chongqing University of Posts and TelecommunicationsChongqing 400065China School of Information Engineering Guangdong University of TechnologyGuangzhou 510006China
The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC n... 详细信息
来源: 评论