咨询与建议

限定检索结果

文献类型

  • 681 篇 期刊文献
  • 601 篇 会议

馆藏范围

  • 1,282 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 799 篇 工学
    • 540 篇 计算机科学与技术...
    • 448 篇 软件工程
    • 175 篇 信息与通信工程
    • 138 篇 生物工程
    • 97 篇 电气工程
    • 95 篇 控制科学与工程
    • 83 篇 电子科学与技术(可...
    • 80 篇 光学工程
    • 70 篇 生物医学工程(可授...
    • 44 篇 化学工程与技术
    • 43 篇 机械工程
    • 36 篇 仪器科学与技术
    • 26 篇 动力工程及工程热...
    • 25 篇 土木工程
    • 24 篇 建筑学
    • 23 篇 材料科学与工程(可...
  • 578 篇 理学
    • 281 篇 数学
    • 185 篇 物理学
    • 154 篇 生物学
    • 93 篇 统计学(可授理学、...
    • 50 篇 化学
    • 47 篇 地球物理学
    • 42 篇 系统科学
  • 214 篇 管理学
    • 114 篇 图书情报与档案管...
    • 108 篇 管理科学与工程(可...
    • 39 篇 工商管理
  • 61 篇 医学
    • 49 篇 临床医学
    • 44 篇 基础医学(可授医学...
    • 29 篇 药学(可授医学、理...
  • 29 篇 法学
    • 28 篇 社会学
  • 12 篇 农学
  • 10 篇 经济学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 45 篇 feature extracti...
  • 40 篇 deep learning
  • 35 篇 training
  • 34 篇 computational mo...
  • 32 篇 semantics
  • 28 篇 predictive model...
  • 28 篇 machine learning
  • 28 篇 accuracy
  • 28 篇 data models
  • 17 篇 reinforcement le...
  • 16 篇 convolution
  • 16 篇 cosmology
  • 16 篇 adaptation model...
  • 15 篇 forecasting
  • 14 篇 analytical model...
  • 14 篇 artificial intel...
  • 13 篇 deep neural netw...
  • 13 篇 task analysis
  • 13 篇 big data
  • 13 篇 data mining

机构

  • 67 篇 national enginee...
  • 55 篇 university of ch...
  • 53 篇 beijing advanced...
  • 40 篇 shenzhen researc...
  • 34 篇 chongqing key la...
  • 34 篇 institute of com...
  • 24 篇 peng cheng labor...
  • 23 篇 college of compu...
  • 21 篇 school of cyber ...
  • 20 篇 center for data ...
  • 19 篇 shenyang institu...
  • 19 篇 icsc - centro na...
  • 19 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of data s...
  • 18 篇 ifpu institute f...
  • 17 篇 school of comput...
  • 17 篇 institute of inf...
  • 16 篇 secure computing...
  • 16 篇 guangdong provin...

作者

  • 33 篇 shen linlin
  • 25 篇 huang qingming
  • 21 篇 xu qianqian
  • 19 篇 zhao weisheng
  • 17 篇 wu baoyuan
  • 16 篇 yang zhiyong
  • 15 篇 weisheng zhao
  • 14 篇 cao xiaochun
  • 14 篇 liu ya-feng
  • 14 篇 linlin shen
  • 12 篇 shang mingsheng
  • 12 篇 xin luo
  • 12 篇 li zhen
  • 12 篇 xu yong
  • 12 篇 li haizhou
  • 12 篇 jin hai
  • 11 篇 li yang
  • 11 篇 nurain ibrahim
  • 11 篇 trotta roberto
  • 11 篇 li qian

语言

  • 1,148 篇 英文
  • 122 篇 其他
  • 19 篇 中文
检索条件"机构=Big Data and Computing Institute"
1282 条 记 录,以下是581-590 订阅
排序:
Electric Vehicle Load Forecasting in Mountainous Cities Considering Traffic Behavior
Electric Vehicle Load Forecasting in Mountainous Cities Cons...
收藏 引用
Chinese Automation Congress (CAC)
作者: Hongyu Long Xiao Yin Chao Liu Yuansen Xu Tian Tian Fan Ye Key Laboratory of Big Data Intelligent Computing School of Automation/School of Industrial Internet Chongqing University of Posts and Telecommunications Chongqing China School of Automation/School of Industrial Internet Chongqing University of Posts and Telecommunications Chongqing China Economic and Technical Research Institute of State Grid Chongqing Electric Power Company Chongqing China
In response to the unique topographical challenges posed by mountainous environments, this paper investigates a probabilistic model of electric vehicle charging load, taking into account the unique traffic behavior an...
来源: 评论
Realizing Emotional Interactions to Learn User Experience and Guide Energy Optimization for Mobile Architectures  22
Realizing Emotional Interactions to Learn User Experience an...
收藏 引用
Proceedings of the 55th Annual IEEE/ACM International Symposium on Microarchitecture
作者: Xueliang Li Zhuobin Shi Junyang Chen Yepang Liu National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China College of Computer Science and Software Engineering Shenzhen University China Research Institute of Trustworthy Autonomous Systems Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation and Department of Computer Science and Engineering Southern University of Science and Technology China
In the age of AI, mobile architectures such as smartphones are still "cold machines"; machines do not feel. If the architecture is able to feel users' feelings and runtime user experience (UX), it will a...
来源: 评论
Zero Stability Well Predicts Performance of Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Liangming Jin, Long Shang, Mingsheng Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences China Chongqing School University of Chinese Academy of Sciences China School of Information Science and Engineering Lanzhou University China
The question of what kind of convolutional neural network (CNN) structure performs well is fascinating. In this work, we move toward the answer with one more step by connecting zero stability and model performance. Sp... 详细信息
来源: 评论
Multi-View Mutual Learning Network for Multimodal Fake News Detection
SSRN
收藏 引用
SSRN 2023年
作者: Cui, Wei Zhang, Xuerui Shang, Mingsheng College of Computer Science and Technology Chongqing University of Posts and Telecommunications Chongqing400065 China Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing400714 China School of Electronic Information and Communication Engineering Chongqing Aerospace Polytechnic Chongqing400021 China
Multimodal fake news is more deceptive than unimodal content and often has adverse social and economic impacts. However, most existing methods learn modal features from a single perspective, without considering simult... 详细信息
来源: 评论
Deconfound Semantic Shift and Incompleteness in Incremental Few-shot Semantic Segmentation  39
Deconfound Semantic Shift and Incompleteness in Incremental ...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Wu, Yirui Xia, Yuhang Li, Hao Yuan, Lixin Chen, Junyang Liu, Jun Lu, Tong Wan, Shaohua Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University Nanjing China College of Computer Science and Software Engineering Shenzhen University Shenzhen China School of Computing and Communication Lancaster University Lancaster United Kingdom National Key Lab for Novel Software Technology Nanjing University Nanjing China Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen China
Incremental few-shot semantic segmentation (IFSS) expands segmentation capacity of the trained model to segment new-class images with few samples. However, semantic meanings may shift from background to object class o... 详细信息
来源: 评论
Towards open-world text-guided face image generation and manipulation
arXiv
收藏 引用
arXiv 2021年
作者: Xia, Weihao Yang, Yujiu Xue, Jing-Hao Wu, Baoyuan Tsinghua Shenzhen International Graduate School Tsinghua University China Department of Statistical Science University College London United Kingdom School of Data Science Chinese University of Hongkong Shenzhen China and Secure Computing Lab of Big Data Shenzhen Research Institute of Big Data Shenzhen China
—The existing text-guided image synthesis methods can only produce limited quality results with at most 2562 resolution and the textual instructions are constrained in a small Corpus. In this work, we propose a unifi... 详细信息
来源: 评论
Multi-scale Contrastive Learning for Gastroenteroscopy Classification
Multi-scale Contrastive Learning for Gastroenteroscopy Class...
收藏 引用
Annual IEEE Symposium on Computer-Based Medical Systems
作者: Dan Li Xuechen Li Zhibin Peng Wenting Chen Linlin Shen Guangyao Wu Computer Vision Institute School of Computer Science & Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology ShenZhen University Shenzhen China City University of Hong Kong Hong Kong SAR China Shenzhen Institute of Artificial Intelligence & Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University General Hospital
In gastroenteroscopy image analysis, numerous CADs demonstrate that deep learning aids doctors' diagnosis. The shapes and sizes of the lesions are varied. And in the clinic, the dataset appears to be data imbalanc...
来源: 评论
Bandwidth Utilization Analysis for TVET Education on Metro-E Campus Network
Bandwidth Utilization Analysis for TVET Education on Metro-E...
收藏 引用
Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), International Conference on
作者: Nor Paezah Abdullah Murizah Kassim Sayang Mohd Deni School of Electrical Engineering College of Engineering Universiti Teknologi MARA Shah Alam Selangor Malaysia Institut Kemahiran Tinggi PERDA (PERDA-TECH) Nibong Tebal Pulau Pinang Malaysia Institute for Big Data Analytics and Artificial Intelligence (IBDAAI) Universiti Teknologi MARA Shah Alam Selangor Malaysia College of Computing Informatics and Media Studies Universiti Teknologi MARA Shah Alam Selangor Malaysia
This paper presents a bandwidth utilization analysis and internet application usage for Technical and Vocational Education and Training (TVET) education on the Metro-E campus network. Despite upgrading high-speed Inte... 详细信息
来源: 评论
Differentiable top-k with optimal transport  34
Differentiable top-k with optimal transport
收藏 引用
34th Conference on Neural Information Processing Systems, NeurIPS 2020
作者: Xie, Yujia Dai, Hanjun Chen, Minshuo Dai, Bo Zhao, Tuo Zha, Hongyuan Wei, Wei Pfister, Tomas College of Computing Georgia Tech United States Google Brain College of Engineering Georgia Tech United States School of Data Science Shenzhen Research Institute of Big Data CUHK Shenzhen China Google Cloud AI
The top-k operation, i.e., finding the k largest or smallest elements from a collection of scores, is an important model component, which is widely used in information retrieval, machine learning, and data mining. How... 详细信息
来源: 评论
Look Inside for More: Internal Spatial Modality Perception for 3D Anomaly Detection
arXiv
收藏 引用
arXiv 2024年
作者: Liang, Hanzhe Xie, Guoyang Hou, Chengbin Wang, Bingshu Gao, Can Wang, Jinbao College of Computer Science and Software Engineering Shenzhen University Shenzhen China Shenzhen Audencia Financial Technology Institute Shenzhen University Shenzhen China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Intelligent Manufacturing CATL Ningde China School of Computing and Artificial Intelligence Fuyao University of Science and Technology Fuzhou China School of Software Northwestern Polytechnical University Xi’an China Guangdong Provincial Key Laboratory of Intelligent Information Processing Shenzhen China
3D anomaly detection has recently become a significant focus in computer vision. Several advanced methods have achieved satisfying anomaly detection performance. However, they typically concentrate on the external str... 详细信息
来源: 评论