咨询与建议

限定检索结果

文献类型

  • 686 篇 期刊文献
  • 602 篇 会议

馆藏范围

  • 1,288 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 807 篇 工学
    • 548 篇 计算机科学与技术...
    • 445 篇 软件工程
    • 179 篇 信息与通信工程
    • 139 篇 生物工程
    • 101 篇 控制科学与工程
    • 100 篇 电气工程
    • 86 篇 电子科学与技术(可...
    • 77 篇 光学工程
    • 71 篇 生物医学工程(可授...
    • 45 篇 化学工程与技术
    • 43 篇 机械工程
    • 36 篇 仪器科学与技术
    • 28 篇 动力工程及工程热...
    • 24 篇 土木工程
    • 23 篇 材料科学与工程(可...
    • 23 篇 建筑学
  • 577 篇 理学
    • 281 篇 数学
    • 183 篇 物理学
    • 153 篇 生物学
    • 93 篇 统计学(可授理学、...
    • 51 篇 化学
    • 47 篇 地球物理学
    • 42 篇 系统科学
  • 213 篇 管理学
    • 113 篇 图书情报与档案管...
    • 108 篇 管理科学与工程(可...
    • 39 篇 工商管理
  • 62 篇 医学
    • 48 篇 临床医学
    • 42 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 29 篇 法学
    • 28 篇 社会学
  • 12 篇 农学
  • 10 篇 经济学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 45 篇 feature extracti...
  • 40 篇 deep learning
  • 35 篇 training
  • 34 篇 computational mo...
  • 32 篇 semantics
  • 28 篇 predictive model...
  • 28 篇 machine learning
  • 28 篇 accuracy
  • 28 篇 data models
  • 16 篇 reinforcement le...
  • 16 篇 convolution
  • 16 篇 cosmology
  • 16 篇 adaptation model...
  • 15 篇 artificial intel...
  • 15 篇 forecasting
  • 14 篇 analytical model...
  • 13 篇 deep neural netw...
  • 13 篇 task analysis
  • 13 篇 big data
  • 13 篇 data mining

机构

  • 67 篇 national enginee...
  • 55 篇 university of ch...
  • 53 篇 beijing advanced...
  • 40 篇 shenzhen researc...
  • 34 篇 chongqing key la...
  • 34 篇 institute of com...
  • 24 篇 peng cheng labor...
  • 23 篇 college of compu...
  • 21 篇 school of cyber ...
  • 20 篇 center for data ...
  • 19 篇 shenyang institu...
  • 19 篇 icsc - centro na...
  • 19 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of data s...
  • 18 篇 ifpu institute f...
  • 17 篇 school of comput...
  • 17 篇 institute of inf...
  • 16 篇 secure computing...
  • 16 篇 guangdong provin...

作者

  • 33 篇 shen linlin
  • 25 篇 huang qingming
  • 21 篇 xu qianqian
  • 19 篇 zhao weisheng
  • 17 篇 wu baoyuan
  • 16 篇 yang zhiyong
  • 15 篇 weisheng zhao
  • 14 篇 cao xiaochun
  • 14 篇 liu ya-feng
  • 14 篇 linlin shen
  • 12 篇 shang mingsheng
  • 12 篇 xin luo
  • 12 篇 li zhen
  • 12 篇 xu yong
  • 12 篇 li haizhou
  • 12 篇 jin hai
  • 11 篇 li yang
  • 11 篇 nurain ibrahim
  • 11 篇 trotta roberto
  • 11 篇 li qian

语言

  • 1,136 篇 英文
  • 141 篇 其他
  • 19 篇 中文
检索条件"机构=Big Data and Computing Institute"
1288 条 记 录,以下是881-890 订阅
排序:
Towards Efficient Large-Scale Network Slicing: An LP Dynamic Rounding-and-Refinement Approach
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Wei-Kun Liu, Ya-Feng Liu, Fan Dai, Yu-Hong Luo, Zhi-Quan School of Mathematics and Statistics Beijing Key Laboratory on MCAACI Beijing Institute of Technology Beijing100081 China State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China Department of Electrical and Electronic Engineering Southern University of Science and Technology Shenzhen518055 China Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen518172 China
In this paper, we propose an efficient algorithm for the network slicing problem which attempts to map multiple customized virtual network requests (also called services) to a common shared network infrastructure and ... 详细信息
来源: 评论
Siamese Generative Adversarial Predicting Network for Extremely Sparse data in Recommendation System
Siamese Generative Adversarial Predicting Network for Extrem...
收藏 引用
IEEE International Conference on big data and Cloud computing (BdCloud)
作者: Qingxian Wang Renjian Zhang Kangkang Ma Bo Chen Jiufang Chen Xiaoyu Shi School of Computer Science and Engineering University of Electronic Science and Technology of China (UESTC) Chengdu China Intelligent Terminal Key Laboratory of SiChuan Province Yibin China Chongqing Key Laboratory of Big Data and Intelligent Computing Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing China
In the recommendation system, user-item preferences are described by a High-Dimensional and Sparse (HiDS) matrix. Collaborative Filtering (CF)-based models have been widely adopted to solve unknown entries estimation.... 详细信息
来源: 评论
Learning from pseudo lesion: A self-supervised framework for covid-19 diagnosis
arXiv
收藏 引用
arXiv 2021年
作者: Li, Zhongliang Jin, Zhihao Li, Xuechen Shen, Linlin Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University Shenzhen518060 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen518060 China
The Coronavirus disease 2019 (COVID-19) has rapidly spread all over the world since its first report in December 2019 and thoracic computed tomography (CT) has become one of the main tools for its diagnosis. In recent... 详细信息
来源: 评论
Group-wise inhibition based feature regularization for robust classification
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Haozhe Wu, Haoqian Xie, Weicheng Liu, Feng Shen, Linlin 1Computer Vision Institute College of Computer Science and Software Engineering 2SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society 3National Engineering Laboratory for Big Data System Computing Technology 4Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University Shenzhen 518060 China
The convolutional neural network (CNN) is vulnerable to degraded images with even very small variations (e.g. corrupted and adversarial samples). One of the possible reasons is that CNN pays more attention to the most... 详细信息
来源: 评论
Interpreting dense retrieval as mixture of topics
arXiv
收藏 引用
arXiv 2021年
作者: Zhan, Jingtao Mao, Jiaxin Liu, Yiqun Guo, Jiafeng Zhang, Min Ma, Shaoping Department of Computer Science and Technology Institute for Artificial Intelligence Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China Beijing Key Laboratory of Big Data Management and Analysis Methods Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Dense Retrieval (DR) reaches state-of-the-art results in first-stage retrieval, but little is known about the mechanisms that contribute to its success. Therefore, in this work, we conduct an interpretation study of r... 详细信息
来源: 评论
Intense harmonics with time-varying orbital angular momentum from relativistic plasma mirrors
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Jingwei Zepf, Matt Leng, Yuxin Li, Ruxin Rykovanov, Sergey G. Shanghai 201800 China Collaborative Innovation Center of IFSA Shanghai Jiao Tong University Shanghai 200240 China Helmholtz Institute Jena Fröbelstieg 3 Jena07743 Germany Faculty of Physics and Astronomy Friedrich-Schiller-Universität Jena Jena07743 Germany High Performance Computing and Big Data Laboratory Center for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Moscow121205 Russia
In this Letter using three-dimensional particle-in-cell simulations and analytical considerations we demonstrate intense high-order plasma surface harmonics carrying a time-varying orbital angular momentum (OAM) - the... 详细信息
来源: 评论
Deep Reinforcement Learning Guided Graph Neural Networks for Brain Network Analysis
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Xusheng Wu, Jia Peng, Hao Beheshti, Amin Monaghan, Jessica J.M. McAlpine, David Hernandez-Perez, Heivet Dras, Mark Dai, Qiong Li, Yangyang Yu, Philip S. He, Lifang Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China School of Computing Macquarie University Sydney Australia Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China National Acoustic Laboratories Sydney Australia Department of Linguistics The Australian Hearing Hub Macquarie University Sydney Australia CAEIT Beijing China Department of Computer Science University of Illinois ChicagoIL United States Computer Science & Engineering Lehigh University PA United States
Modern neuroimaging techniques enable us to construct human brains as brain networks or connectomes. Capturing brain networks' structural information and hierarchical patterns is essential for understanding brain ... 详细信息
来源: 评论
Learning discrete representations via constrained clustering for effective and efficient dense retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Zhan, Jingtao Mao, Jiaxin Liu, Yiqun Guo, Jiafeng Zhang, Min Ma, Shaoping Department of Computer Science and Technology Institute for Artificial Intelligence Beijing National Research Center for Information Science and Technology Tsinghua University Beijing100084 China Beijing Key Laboratory of Big Data Management and Analysis Methods Gaoling School of Artificial Intelligence Renmin University of China Beijing100872 China CAS Key Lab of Network Data Science and Technology Institute of Computing Technology Chinese Academy of Sciences Beijing China
Dense Retrieval (DR) has achieved state-of-the-art first-stage ranking effectiveness. However, the efficiency of most existing DR models is limited by the large memory cost of storing dense vectors and the time-consum... 详细信息
来源: 评论
Dynamics of all-optically switched magnetic domains in Co/Gd heterostructures with Dzyaloshinskii-Moriya interaction
收藏 引用
Physical Review B 2020年 第10期102卷 104412-104412页
作者: Anni Cao Youri L. W. van Hees Reinoud Lavrijsen Weisheng Zhao Bert Koopmans Department of Applied Physics Institute for Photonic Integration Eindhoven University of Technology PO Box 513 5600 MB Eindhoven The Netherlands Fert Beijing Institute Beijing Advanced Innovation Center for Big Data and Brain Computing School of Microelectronics Beihang University Beijing 100191 China
Given the development of hybrid spintronic-photonic devices and optical manipulation of chiral magnetic textures, a combined interest in single-pulse all-optical switching (AOS) of magnetization and current-induced do... 详细信息
来源: 评论
Simulating the LOcal Web (SLOW) II. Properties of local galaxy clusters
arXiv
收藏 引用
arXiv 2024年
作者: Hernández-Martínez, Elena Dolag, Klaus Seidel, Benjamin Sorce, Jenny G. Aghanim, Nabila Pilipenko, Sergey Gottlöber, Stefan Lebeau, Théo Valentini, Milena Universitäts-Sternwarte Fakultät für Physik Ludwig-Maximilians-Universität München Scheinerstr.1 München81679 Germany Max Planck Institute for Astrophysics Karl-Schwarzschild-Str. 1 GarchingD-85741 Germany Univ. Lille CNRS Centrale Lille UMR 9189 CRIStAL LilleF-59000 France Université Paris-Saclay CNRS Institut d’Astrophysique Spatiale Orsay91405 France An der Sternwarte 16 PotsdamD-14482 Germany Astronomy Unit Department of Physics University of Trieste Via Tiepolo 11 TriesteI-34131 Italy ICSC - Italian Research Center on High Performance Computing Big Data and Quantum Computing Italy INAF Osservatorio Astronomico di Trieste Via Tiepolo 11 TriesteI-34131 Italy P.N. Lebedev Physical Institute The Russian Academy of Sciences Profsojuznaja 84/32 Moscow117997 Russia
Context. This is the second paper in a series presenting the results from a 500 ℎ−1Mpc large constrained simulation of the local Universe (SLOW). The initial conditions for this cosmological hydro-dynamical simulation... 详细信息
来源: 评论