咨询与建议

限定检索结果

文献类型

  • 686 篇 期刊文献
  • 602 篇 会议

馆藏范围

  • 1,288 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 807 篇 工学
    • 548 篇 计算机科学与技术...
    • 445 篇 软件工程
    • 179 篇 信息与通信工程
    • 139 篇 生物工程
    • 101 篇 控制科学与工程
    • 100 篇 电气工程
    • 86 篇 电子科学与技术(可...
    • 77 篇 光学工程
    • 71 篇 生物医学工程(可授...
    • 45 篇 化学工程与技术
    • 43 篇 机械工程
    • 36 篇 仪器科学与技术
    • 28 篇 动力工程及工程热...
    • 24 篇 土木工程
    • 23 篇 材料科学与工程(可...
    • 23 篇 建筑学
  • 577 篇 理学
    • 281 篇 数学
    • 183 篇 物理学
    • 153 篇 生物学
    • 93 篇 统计学(可授理学、...
    • 51 篇 化学
    • 47 篇 地球物理学
    • 42 篇 系统科学
  • 213 篇 管理学
    • 113 篇 图书情报与档案管...
    • 108 篇 管理科学与工程(可...
    • 39 篇 工商管理
  • 62 篇 医学
    • 48 篇 临床医学
    • 42 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 29 篇 法学
    • 28 篇 社会学
  • 12 篇 农学
  • 10 篇 经济学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 45 篇 feature extracti...
  • 40 篇 deep learning
  • 35 篇 training
  • 34 篇 computational mo...
  • 32 篇 semantics
  • 28 篇 predictive model...
  • 28 篇 machine learning
  • 28 篇 accuracy
  • 28 篇 data models
  • 16 篇 reinforcement le...
  • 16 篇 convolution
  • 16 篇 cosmology
  • 16 篇 adaptation model...
  • 15 篇 artificial intel...
  • 15 篇 forecasting
  • 14 篇 analytical model...
  • 13 篇 deep neural netw...
  • 13 篇 task analysis
  • 13 篇 big data
  • 13 篇 data mining

机构

  • 67 篇 national enginee...
  • 55 篇 university of ch...
  • 53 篇 beijing advanced...
  • 40 篇 shenzhen researc...
  • 34 篇 chongqing key la...
  • 34 篇 institute of com...
  • 24 篇 peng cheng labor...
  • 23 篇 college of compu...
  • 21 篇 school of cyber ...
  • 20 篇 center for data ...
  • 19 篇 shenyang institu...
  • 19 篇 icsc - centro na...
  • 19 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of data s...
  • 18 篇 ifpu institute f...
  • 17 篇 school of comput...
  • 17 篇 institute of inf...
  • 16 篇 secure computing...
  • 16 篇 guangdong provin...

作者

  • 33 篇 shen linlin
  • 25 篇 huang qingming
  • 21 篇 xu qianqian
  • 19 篇 zhao weisheng
  • 17 篇 wu baoyuan
  • 16 篇 yang zhiyong
  • 15 篇 weisheng zhao
  • 14 篇 cao xiaochun
  • 14 篇 liu ya-feng
  • 14 篇 linlin shen
  • 12 篇 shang mingsheng
  • 12 篇 xin luo
  • 12 篇 li zhen
  • 12 篇 xu yong
  • 12 篇 li haizhou
  • 12 篇 jin hai
  • 11 篇 li yang
  • 11 篇 nurain ibrahim
  • 11 篇 trotta roberto
  • 11 篇 li qian

语言

  • 1,136 篇 英文
  • 141 篇 其他
  • 19 篇 中文
检索条件"机构=Big Data and Computing Institute"
1288 条 记 录,以下是891-900 订阅
排序:
A Survey on Deep Learning Event Extraction: Approaches and Applications
arXiv
收藏 引用
arXiv 2021年
作者: Li, Qian Li, Jianxin Sheng, Jiawei Cui, Shiyao Wu, Jia Hei, Yiming Peng, Hao Guo, Shu Wang, Lihong Beheshti, Amin Yu, Philip S. The School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100083 China The Institute of Information Engineering Chinese Academy of Sciences Beijing100083 China The School of Cyber Security University of Chinese Academy of Sciences Beijing100083 China The School of Cyber Science and Technology Beihang University Beijing100083 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100083 China The National Computer Network Emergency Response Technical Team Coordination Center of China Beijing100029 China The School of Computing Macquarie University Sydney Australia The Department of Computer Science University of Illinois at Chicago Chicago60607 United States
Event extraction is a crucial research task for promptly apprehending event information from massive textual data. With the rapid development of deep learning, event extraction based on deep learning technology has be... 详细信息
来源: 评论
Multi-Scale Region-based Fully Convolutional Networks
Multi-Scale Region-based Fully Convolutional Networks
收藏 引用
IEEE International Conference on Power, Intelligent computing and Systems (ICPICS)
作者: Chengqi Xu Xuehai Hong Yuanzhou Yao Hengheng Shen Qian Ma Hui Jiang Big data research institute Cloud Computing Center Chinese Academy of Sciences Shangrao China Institute of Computing Technology Chinese Academy of Sciences Beijing China College of Information Engineering Sichuan Agricultural University Ya’ an City Sichuan State China
A multi-scale R-FCN detection algorithm is presented to solve the problem of region-based full convolution network (R-FCN) in multi-scale object detection. Firstly, in order to solve the problem that R-FCN algorithm h... 详细信息
来源: 评论
Review Spam Detection Based on Multi-dimensional Features  9th
Review Spam Detection Based on Multi-dimensional Features
收藏 引用
9th International Conference on Artificial Intelligence and Mobile Services, AIMS 2020, held as part of the Services Conference Federation, SCF 2020
作者: Deng, Liming Wei, Jingjing Liang, Shaobin Wen, Yuhan Liao, Xiangwen College of Mathematics and Computer Science Fuzhou University Fuzhou350116 China Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China Digital Fujian Institute of Financial Big Data Fuzhou350116 China College of Electronics and Information Science Fujian Jiangxia University Fuzhou350108 China
Review spam detection aims to detect the reviews with false information posted by the spammers on social media. The existing methods of review spam detection ignore the importance of the information hidden in the user... 详细信息
来源: 评论
computing-in-Memory Architecture Based on Field-Free SOT-MRAM with Self-Reference Method
Computing-in-Memory Architecture Based on Field-Free SOT-MRA...
收藏 引用
IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Chao Wang Zhaohao Wang Yansong Xu Jianlei Yang Youguang Zhang Weisheng Zhao Fert Beijing Research Institute Beihang University School of Electronics and Information Engineering Beihang University School of Microelectronics Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University School of Computer Science and Engineering Beihang University Beijing 100191 China
On the current computing platforms, the memory wall between processor and memory has become the toughest challenge for the traditional Von-Neumann computer architecture. computing-in-Memory (CIM) is taken as a promisi... 详细信息
来源: 评论
FASTEN: Fuzzy Neural Support Vector Machine for Classification
收藏 引用
IEEE Transactions on Fuzzy Systems 2025年
作者: Yuan, Zhian Qian, Yuhua Liang, Xinyan Kou, Yi Hou, Chenping Hu, Qinghua Shanxi University Institute of Big Data Science and Industry Key laboratory of Evolutionary Science Intelligence of Shanxi Province Shanxi Taiyuan030006 China National University of Defense Technology College of Science Hunan Changsha410073 China Tianjin University College of Intelligence and Computing Tianjin Key Laboratory of Machine Learning Tianjin300350 China
Classification tasks have long been a central concern in the field of machine learning. Although deep neural network-based approaches offer a novel, versatile and highly precise solution for classification tasks, the ... 详细信息
来源: 评论
Keywords-oriented data Augmentation for Chinese  6
Keywords-oriented Data Augmentation for Chinese
收藏 引用
6th IEEE International Conference on Computer and Communications, ICCC 2020
作者: Yuan, Fang Hong, Xianbin Yuan, Cheng Fei, Xiang Guan, Sheng-Uei Liu, Dawei Wang, Wei Ai Group Enc Digital Technology Co. Ltd Shanghai China Research Institute of Big Data Analytics Xi'an Jiaotong-Liverpool University Suzhou China Ai Group Beijing Livedata Technology Co. Ltd Beijing China School of Computing Electronics and Maths Coventry University Coventry United Kingdom Cyber Technology Institute De Montfort University Leicester United Kingdom
In natural language processing tasks, data is very important, but data collection is not cheap. Large volume data can well serve a series of tasks, especially for deep learning tasks. data augmentation methods are sol... 详细信息
来源: 评论
µVulDeePecker: A deep learning-based system for multiclass vulnerability detection
arXiv
收藏 引用
arXiv 2020年
作者: Zou, Deqing Wang, Sujuan Xu, Shouhuai Li, Zhen Jin, Hai National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab Big Data Security Engineering Research Center School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan430074 China Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen518057 China National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab Big Data Security Engineering Research Center School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China Department of Computer Science University of Texas at San Antonio San AntonioTX78249 United States
Fine-grained software vulnerability detection is an important and challenging problem. Ideally, a detection system (or detector) not only should be able to detect whether or not a program contains vulnerabilities, but... 详细信息
来源: 评论
Weighing neutrinos with 21cm Intensity Mapping at the SKAO
arXiv
收藏 引用
arXiv 2025年
作者: Autieri, Gabriele Berti, Maria Spinelli, Marta Haridasu, Balakrishna Sandeep Viel, Matteo SISSA- International School for Advanced Studies Via Bonomea 265 Trieste34136 Italy INFN National Institute for Nuclear Physics Via Valerio 2 TriesteI-34127 Italy IFPU Institute for Fundamental Physics of the Universe via Beirut2 Trieste34151 Italy Département de Physique Théorique Center for Astroparticle Physics Université de Genève Quai E. Ansermet 24 Genève 4CH-1211 Switzerland Observatoire de la Côte d’Azur Laboratoire Lagrange Bd de l’Observatoire CS 34229 Nice06304 cedex 4 France Department of Physics and Astronomy University of the Western Cape Robert Sobukwe Road Cape Town7535 South Africa INAF Osservatorio Astronomico di Trieste Via G. B. Tiepolo 11 TriesteI-34131 Italy Italian Research Center on High Performance Computing Big Data and Quantum Computing Italy
We explore the constraining power of future 21cm intensity mapping (IM) observations at the SKAO, focusing primarily on the sum of neutrino masses, Σmν. We forecast observations of the 21cm IM auto-power spectrum as... 详细信息
来源: 评论
Multi-Modal Transformer for Accelerated MR Imaging
arXiv
收藏 引用
arXiv 2021年
作者: Feng, Chun-Mei Yan, Yunlu Chen, Geng Xu, Yong Hu, Ying Shao, Ling Fu, Huazhu Shenzhen Key Laboratory of Visual Object Detection and Recognition Harbin Institute of Technology Shenzhen518055 China National Engineering Laboratory for Integrated AeroSpace-Ground-Ocean Big Data Application Technology School of Computer Science and Engineering Northwestern Polytechnical University Xi’an710072 China Terminus Group China Institute of High Performance Computing A*STAR Singapore138632 Singapore
Accelerated multi-modal magnetic resonance (MR) imaging is a new and effective solution for fast MR imaging, providing superior performance in restoring the target modality from its undersampled counterpart with guida... 详细信息
来源: 评论
Is GN-z11 powered by a super-Eddington massive black hole?
arXiv
收藏 引用
arXiv 2024年
作者: Bhatt, Maulik Gallerani, Simona Ferrara, Andrea Mazzucchelli, Chiara D'Odorico, Valentina Valentini, Milena Zana, Tommaso Farina, Emanuele Paolo Chakraborty, Srija Scuola Normale Superiore Piazza dei Cavalieri 7 PisaI-56126 Italy Instituto de Estudios Astrofísicos Facultad de Ingeniería y Ciencias Universidad Diego Portales Avenida Ejercito Libertador 441 Santiago Chile INAF - Osservatorio Astronomico di Trieste via Tiepolo 11 TriesteI-34131 Italy IFPU - Institute for Fundamental Physics of the Universe Via Beirut 2 Trieste34014 Italy Astronomy Unit Department of Physics University of Trieste via Tiepolo 11 TriesteI-34131 Italy ICSC - Italian Research Center on High Performance Computing Big Data and Quantum Computing Italy Dipartimento di Fisica Sapienza Università di Roma Piazzale Aldo Moro 5 Roma00185 Italy Gemini Observatory NSF's NOIRLab 670 N A'ohoku Place HiloHI96720 United States
Context. Observations of z ∼ 6 quasars powered by supermassive black holes (SMBHs;MBH ∼ 108−10 Mo) challenge our current understanding of early black hole (BH) formation and evolution. The advent of the James Webb S... 详细信息
来源: 评论