咨询与建议

限定检索结果

文献类型

  • 686 篇 期刊文献
  • 602 篇 会议

馆藏范围

  • 1,288 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 807 篇 工学
    • 548 篇 计算机科学与技术...
    • 445 篇 软件工程
    • 179 篇 信息与通信工程
    • 139 篇 生物工程
    • 101 篇 控制科学与工程
    • 100 篇 电气工程
    • 86 篇 电子科学与技术(可...
    • 77 篇 光学工程
    • 71 篇 生物医学工程(可授...
    • 45 篇 化学工程与技术
    • 43 篇 机械工程
    • 36 篇 仪器科学与技术
    • 28 篇 动力工程及工程热...
    • 24 篇 土木工程
    • 23 篇 材料科学与工程(可...
    • 23 篇 建筑学
  • 577 篇 理学
    • 281 篇 数学
    • 183 篇 物理学
    • 153 篇 生物学
    • 93 篇 统计学(可授理学、...
    • 51 篇 化学
    • 47 篇 地球物理学
    • 42 篇 系统科学
  • 213 篇 管理学
    • 113 篇 图书情报与档案管...
    • 108 篇 管理科学与工程(可...
    • 39 篇 工商管理
  • 62 篇 医学
    • 48 篇 临床医学
    • 42 篇 基础医学(可授医学...
    • 28 篇 药学(可授医学、理...
  • 29 篇 法学
    • 28 篇 社会学
  • 12 篇 农学
  • 10 篇 经济学
  • 6 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 45 篇 feature extracti...
  • 40 篇 deep learning
  • 35 篇 training
  • 34 篇 computational mo...
  • 32 篇 semantics
  • 28 篇 predictive model...
  • 28 篇 machine learning
  • 28 篇 accuracy
  • 28 篇 data models
  • 16 篇 reinforcement le...
  • 16 篇 convolution
  • 16 篇 cosmology
  • 16 篇 adaptation model...
  • 15 篇 artificial intel...
  • 15 篇 forecasting
  • 14 篇 analytical model...
  • 13 篇 deep neural netw...
  • 13 篇 task analysis
  • 13 篇 big data
  • 13 篇 data mining

机构

  • 67 篇 national enginee...
  • 55 篇 university of ch...
  • 53 篇 beijing advanced...
  • 40 篇 shenzhen researc...
  • 34 篇 chongqing key la...
  • 34 篇 institute of com...
  • 24 篇 peng cheng labor...
  • 23 篇 college of compu...
  • 21 篇 school of cyber ...
  • 20 篇 center for data ...
  • 19 篇 shenyang institu...
  • 19 篇 icsc - centro na...
  • 19 篇 national enginee...
  • 18 篇 shenzhen institu...
  • 18 篇 school of data s...
  • 18 篇 ifpu institute f...
  • 17 篇 school of comput...
  • 17 篇 institute of inf...
  • 16 篇 secure computing...
  • 16 篇 guangdong provin...

作者

  • 33 篇 shen linlin
  • 25 篇 huang qingming
  • 21 篇 xu qianqian
  • 19 篇 zhao weisheng
  • 17 篇 wu baoyuan
  • 16 篇 yang zhiyong
  • 15 篇 weisheng zhao
  • 14 篇 cao xiaochun
  • 14 篇 liu ya-feng
  • 14 篇 linlin shen
  • 12 篇 shang mingsheng
  • 12 篇 xin luo
  • 12 篇 li zhen
  • 12 篇 xu yong
  • 12 篇 li haizhou
  • 12 篇 jin hai
  • 11 篇 li yang
  • 11 篇 nurain ibrahim
  • 11 篇 trotta roberto
  • 11 篇 li qian

语言

  • 1,136 篇 英文
  • 141 篇 其他
  • 19 篇 中文
检索条件"机构=Big Data and Computing Institute"
1288 条 记 录,以下是901-910 订阅
排序:
An Effective Pull-based Congestion Control Protocol for Multi-Identifier Network
An Effective Pull-based Congestion Control Protocol for Mult...
收藏 引用
International Conference on Computer and Communications (ICCC)
作者: Bin Yin Hui Li He Bai Zhengqi Wu Ping Lu Qiongwei Ye Yong Yang Jianping Wu Shenzhen Graduate School Peking University Foshan Sai Si Chan Technology Co Shenzhen China Shenzhen Graduate School Peking University JiuJiang University Foshan University Shenzhen China Shenzhen Graduate School Peking University Shenzhen China The Cloud Computing and IT Institute of ZTE Corporation Shenzhen China Yunnan University of Finance & Economics Yunnan China School of Mathematics and Big Data Foshan University Foshan China China Communications Services Construction Co. Ltd
With the rapid development of the network, the IP network have exposed many issues, such as the exhausted IP addresses, security risks and inapplicability to the streaming media. To solve these issues, Multi-Identifie... 详细信息
来源: 评论
The Minority Matters: A Diversity-Promoting Collaborative Metric Learning Algorithm
arXiv
收藏 引用
arXiv 2022年
作者: Bao, Shilong Xu, Qianqian Yang, Zhiyong He, Yuan Cao, Xiaochun Huang, Qingming State Key Laboratory of Information Security Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Alibaba Group China School of Cyber Science and Technology Shenzhen Campus Sun Yat-sen University China Key Laboratory of Big Data Mining and Knowledge Management CAS China Peng Cheng Laboratory China
Collaborative Metric Learning (CML) has recently emerged as a popular method in recommendation systems (RS), closing the gap between metric learning and Collaborative Filtering. Following the convention of RS, existin... 详细信息
来源: 评论
The Adaptive Fault-tolerant Routing Based on an Improved Local Security Information Model of the Exchanged Hypercube
The Adaptive Fault-tolerant Routing Based on an Improved Loc...
收藏 引用
IEEE International Conference on big data and Cloud computing (BdCloud)
作者: Yazhi Zhang Chuanwen Luo Guijuan Wang Li Zhang Mengjie Lv Jiguo Yu School of Computer Science and Technology Qilu University of Technology Jinan China School of Information Science and Technology Beijing Forestry University Beijing China Key Laboratory of Computing Power Network and Information Security Ministry of Education Shandong Computer Science Center Qilu University of Technology (Shandong Academy of Sciences) Jinan China Shandong Provincial Key Laboratory of Computer Networks Shandong Fundamental Research Center for Computer Science Jinan China College of Computer Nanjing University of Posts and Telecommunications Nanjing China Big Data Research Institute Qilu University of Technology (Shandong Academy of Sciences) Jinan China
With the increasing amount of computation in high-performance computing, the scale of interconnection networks is becoming larger and larger. It is inevitable that processors or links in the network become faulty. The...
来源: 评论
Joint Compression and Deadline Optimization for Wireless Federated Learning
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Maojun Li, Yang Liu, Dongzhu Jin, Richeng Zhu, Guangxu Zhong, Caijun Quek, Tony Q.S. The College of information Science and Electronic Engineering Zhejiang University Hangzhou China China Academy of Information and Communications Technology Beijing China School of Computing Science University of Glasgow United Kingdom The Department of Information and Communication Engineering Zhejiang University Hangzhou310007 China The Zhejiang–Singapore Innovation and AI Joint Research Lab Hangzhou310007 China Hangzhou310007 China The Shenzhen Research Institute of Big Data Guangdong Shenzhen518172 China The Peng Cheng Laboratory Guangdong Shenzhen518055 China Guangdong Guangzhou510555 China The Singapore University of Technology and Design Singapore487372 Singapore
Federated edge learning (FEEL) is a popular distributed learning framework for privacy-preserving at the edge, in which densely distributed edge devices periodically exchange model-updates with the server to complete ... 详细信息
来源: 评论
AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems
arXiv
收藏 引用
arXiv 2022年
作者: Hou, Wenzheng Xu, Qianqian Yang, Zhiyong Bao, Shilong He, Yuan Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China State Key Laboratory of Information Security Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Alibaba Group Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China Artificial Intelligence Research Center Peng Cheng Laboratory Shenzhen China
It is well-known that deep learning models are vulnerable to adversarial examples. Existing studies of adversarial training have made great progress against this challenge. As a typical trait, they often assume that t... 详细信息
来源: 评论
Z-Inspection®: A Process to Assess Trustworthy AI
IEEE Transactions on Technology and Society
收藏 引用
IEEE Transactions on Technology and Society 2021年 第2期2卷 83-97页
作者: Zicari, Roberto V. Brodersen, John Brusseau, James Dudder, Boris Eichhorn, Timo Ivanov, Todor Kararigas, Georgios Kringen, Pedro McCullough, Melissa Moslein, Florian Mushtaq, Naveed Roig, Gemma Sturtz, Norman Tolle, Karsten Tithi, Jesmin Jahan Van Halem, Irmhild Westerlund, Magnus Frankfurt Big Data Lab Goethe University Frankfurt Frankfurt Germany Department of Public Health Section of General Practice and Research Unit for General Practice Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark Philosophy Department Pace University New YorkNY United States Department of Computer Science University of Copenhagen Copenhagen Denmark Department of Physiology Faculty of Medicine University of Iceland Iceland Institute of the Law and Regulation of Digitalization Philipps-University Marburg Marburg Germany Parallel Computing Labs Intel Labs Santa ClaraCA United States Department of Computer Science Arcada University of Applied Sciences Helsinki Finland Primary Health Care Research Unit Copenhagen1014 Denmark
The ethical and societal implications of artificial intelligence systems raise concerns. In this article, we outline a novel process based on applied ethics, namely, Z-Inspection®, to assess if an AI system is tr... 详细信息
来源: 评论
Probabilistic methods for approximate archetypal analysis
arXiv
收藏 引用
arXiv 2021年
作者: Han, Ruijian Osting, Braxton Wang, Dong Xu, Yiming Department of Statistics The Chinese University of Hong Kong Hong Kong Department of Mathematics University of Utah Salt Lake City United States School of Science and Engineering The Chinese University of Hong Kong Shenzhen China Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong Shenzhen China Scientific Computing and Imaging Institute University of Utah Salt Lake City United States
Archetypal analysis is an unsupervised learning method for exploratory data analysis. One major challenge that limits the applicability of archetypal analysis in practice is the inherent computational complexity of th... 详细信息
来源: 评论
Algebraic Analysis of Bifurcations and Chaos for Discrete Dynamical Systems  8th
Algebraic Analysis of Bifurcations and Chaos for Discrete Dy...
收藏 引用
8th International Conference on Mathematical Aspects of Computer and Information Sciences, MACIS 2019
作者: Huang, Bo Niu, Wei LMIB-School of Mathematical Sciences Beihang University Beijing100191 China Courant Institute of Mathematical Sciences New York University New York10012 United States Ecole Centrale de Pékin Beihang University Beijing100191 China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing100191 China
This paper deals with the stability, bifurcations and chaotic behaviors of discrete dynamical systems by using methods of symbolic computation. We explain how to reduce the problems of analyzing the stability, bifurca... 详细信息
来源: 评论
Integral Sliding-Mode Control of Piecewise Linear systems
Integral Sliding-Mode Control of Piecewise Linear systems
收藏 引用
第三十九届中国控制会议
作者: Chunyang Zhang Qing Gao Peng Zhang Kang Zhou School of Automation Science and Eectrical Engineering Beihang University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University School of Mechatronical Engineering Beijing Institute of Technology
This paper proposes a dynamic integral sliding-mode control approach for a class of nonlinear systems based on piecewise affine linear models. A general nonlinear system is first modeled equivalently as a uncertain pi... 详细信息
来源: 评论
Neural posterior estimation with guaranteed exact coverage: The ringdown of GW150914
收藏 引用
Physical Review D 2023年 第4期108卷 044029-044029页
作者: Marco Crisostomi Kallol Dey Enrico Barausse Roberto Trotta SISSA Via Bonomea 265 34136 Trieste Italy and INFN Sezione di Trieste 34127 Trieste Italy IFPU—Institute for Fundamental Physics of the Universe Via Beirut 2 34014 Trieste Italy School of Physics Indian Institute of Science Education and Research Thiruvananthapuram Maruthamala PO Vithura Thiruvananthapuram 695551 Kerala India Physics Department Imperial College London Prince Consort Road SW7 2AZ London United Kingdom Centro Nazionale “High Performance Computer Big Data and Quantum Computing” Via Magnanelli 2 40033 Casalecchio di Reno (BO) Italy
We analyze the ringdown phase of the first detected black-hole merger, GW150914, using a simulation-based inference pipeline based on masked autoregressive flows. We obtain approximate marginal posterior distributions... 详细信息
来源: 评论